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Roadmap	


• informal motivation

• functional causal models

• causal graphical models;

d-separation, Markov conditions, faithfulness

• formalizing interventions

• causal inference...

– using time order

– using conditional independences

– using restricted function classes

– using “independence” of mechanisms

– not using statistics
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Dependence vs. Causation 

…the term cargo cult… is also idiomatically used (in the words of wikipedia)  
"to mean any group of people who imitate the superficial exterior of a process  
or system without having any understanding of the underlying substance". 
                                     (source: http://philosophyisfashionable.blogspot.com/) 

Cargo cults— religious practices in pacific tribes around world war II,  
trying to obtain wealth (the "cargo") by building mock landing strips etc. 
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•  Better to talk of dependence than correlation 
•  Most statisticians would agree that causality does tell us 

something about dependence 
•  But dependence does tell us something causality too: 

“Correlation does not tell us anything about causality” 
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Z 

Y X 

special cases: 

Y X 

Y X 

Statistical Implications of Causality 

Reichenbach’s

Common Cause Principle

links causality and probability:

(i) if X and Y are statistically

dependent, then there is a Z
causally influencing both;

(ii) Z screens X and Y from each

other (given Z, the observables

X and Y become independent)
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Notation 

• A,B event

• X, Y, Z random variable

• x value of a random variable

• Pr probability measure

• PX probability distribution of X

• p density

• pX or p(X) density of PX

• p(x) density of PX evaluated at the point x

• always assume the existence of a joint density, w.r.t. a product

measure
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Independence 

Two events A and B are called independent if

Pr(A \ B) = Pr(A) · Pr(B).

A1, . . . , An are called independent if for every subset S ⇢ {1, . . . , n}
we have

Pr

 
\

i2S

Ai

!
=

Y

i2S

Pr(Ai).

Note: for n � 3, pairwise independence Pr(Ai\Aj) = Pr(Ai)·Pr(Aj)

for all i, j does not imply independence.
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Independence of random variables 
Two real-valued random variables X and Y are called independent,

X ?? Y,

if for every a, b 2 R, the events {X  a} and {Y  b} are indepen-

dent.

Equivalently, in terms of densities: for all x, y,

p(x, y) = p(x)p(y)

Note:

If X ?? Y , then E[XY ] = E[X]E[Y ], and cov[X,Y ] = E[XY ]�E[X]E[Y ] = 0.

The converse is not true: cov[X,Y ] = 0 6) X ?? Y .

However, we have, for large F : (8f, g 2 F : cov[f(X), g(Y )] = 0) ) X ?? Y
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Conditional Independence of random variables 
Two real-valued random variables X and Y are called conditionally

independent given Z,

(X ?? Y ) |Z or X ?? Y |Z or (X ?? Y |Z)p

if

p(x, y|z) = p(x|z)p(y|z)
for all x, y, and for all z s.t. p(z) > 0.

Note: conditional independence neither implies nor is implied by

independence.

I.e., there are X, Y, Z such that we have only independence or only

conditional independence.
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Functional Causal Model (Pearl et al.) 

X
j

parents of X
j
   (PA

j
) 

 

= fj (PAj , Uj)

• Set of observables X1, . . . , Xn

• directed acyclic graph G with vertices X1, . . . , Xn

• Semantics: parents = direct causes

• Xi = fi(ParentsOfi,Noisei), with independent Noise1, . . . ,Noisen.

• “Noise” means “unexplained” (or “exogenous”), we use Ui

• Can add requirement that f1, . . . , fn,Noise1, . . . ,Noisen “independent”
(cf. Lemeire & Dirkx 2006, Janzing & Schölkopf 2010 — more below)
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Functional Causal Model, ctd. 

• this model can be shown to satisfy Reichenbach’s principle:

1. functions of independent variables are independent, hence dependence

can only arise in two vertices that depend (partly) on the same noise

term(s).

2. if we condition on these noise terms, the variables become independent

Z 

Y X 

fX fY

fZ
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Functional Causal Model, ctd. 

Z 

Y X 

fX fY

fZ

• Independence of noises is a form of ”causal su�ciency:” if the noises were

dependent, then Reichenbach’s principle would tell us the causal graph is

incomplete

• Interventions are realized by replacing functions by values

• the model entails a joint distribution p(X1, . . . , Xn). Questions:

(1) What can we say about it?

(2) Can we recover G from p?
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Functional Model and Markov conditions 
(Lauritzen 1996, Pearl 2000) 
Theorem: the following are equivalent:

– Existence of a functional causal model
– Local Causal Markov condition: Xj statistically independent of non-

descendants, given parents (i.e.: every information exchange with its non-

descendants involves its parents)

– Global Causal Markov condition: d-separation (characterizes the set of

independences implied by local Markov condition)

– Factorization p(X1, . . . , Xn) =
�

j p (Xj | Parentsj) (conditionals as

causal mechanisms generating statistical dependence)

(subject to technical conditions)
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Pearl’s do-calculus

• Motivation: goal of causality is to infer the e↵ect of

interventions

• distribution of Y given that X is set to x:

p(Y |doX = x) or p(Y |do x)

• can be computed from p and G
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Computing p(X1, . . . , Xn

|do x
i

)

from p(X1, . . . , Xn

) and G

• Start with causal factorization

p(X1, . . . , Xn

) =

nY

j=1

p(X

j

|PA

j

)

• Replace p(X

i

|PA

i

) with �

Xixi

p(X1, . . . , Xn

|do x
i

) :=

Y

j 6=i

p(X

j

|PA

j

)�

Xixi
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Computing p(X
k

|do x
i

)

summation over xi yields

p(X1, . . . , Xi�1, Xi+1, . . . , Xn|do xi) =

Y

j 6=i

p(Xj |PAj(xi)) .

• distribution of Xj with j 6= i is given by dropping p(Xi|PAi) and substi-

tuting xi into PAj to get PAj(xi).

• obtain p(Xk|do xi) by marginalization
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Examples for p(.|do x) = p(.|x)
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Examples for p(.|do x) ⇥= p(.|x)

• p(Y |do x) = P (Y ) ⇥= P (Y |x)

• p(Y |do x) = P (Y ) ⇥= P (Y |x)



Dominik Janzing & Bernhard Schölkopf,  June 26, 2012 

Example: controlling for confounding

X 6?? Y partly due to the Z and partly due to X ! Y

• causal factorization

p(X,Y, Z) = p(Z)p(X|Z)p(Y |X,Z)

• replace P (X|Z) with �

Xx

p(Y, Z|do x) = p(Z) �

Xx

p(Y |X,Z)

• marginalize

p(Y |do x) =
X

z

p(z)p(Y |x, z) 6=
X

z

p(z|x)p(Y |x, z) = p(Y |x) .
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Identifiability problem

e.g. Tian & Pearl (2002)

• given the causal DAG G and two nodes Xi, Xj

• which nodes need to be observed to compute p(Xi|do xj) ?
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Inferring the DAG

• Key postulate: Causal Markov condition

• Essential mathematical concept: d-separation
(describes the conditional independences required by a causal DAG)
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d-separation (Pearl 1988)

Path = sequence of pairwise distinct nodes where consecutive ones are adjacent

A path q is said to be blocked by the set Z if

• q contains a chain i⇤ m⇤ j or a fork i⇥ m⇤ j such
that the middle node is in Z, or

• q contains a collider i⇤ m⇥ j such that the middle node
is not in Z and such that no descendant of m is in Z.

Z is said to d-separate X and Y in the DAG G, formally

(X ⌅⌅ Y |Z)G

if Z blocks every path from a node in X to a node in Y .
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� �� �

Example (blocking of paths)

path from X to Y is blocked by conditioning on U or Z or both
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Example (unblocking of paths)

• path from X to Y is blocked by �

• unblocked by conditioning on Z or W or both
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X Y

Z = X or Y

Unblocking by conditioning on common e�ects

Berkson’s paradox (1946)

Example: X,Y, Z binary

X ⇥⇥ Y but X �⇥⇥ Y |Z

• assume: in paper submissions quality of theory is independent

of quality of experiments

• papers get accepted for ICML if experiments or theory are

strong

• for accepted ICML-papers, quality of theory and experiments

are negatively correlated
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Asymmetry under inverting arrows

(Reichenbach 1956)

X ⇥⇥ Y X �⇥⇥ Y

X �⇥⇥ Y |Z X ⇥⇥ Y |Z
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� �� �

� �

Examples (d-separation)

(X ⇥⇥ Y |ZW )G

(X ⇥⇥ Y |ZUW )G

(X ⇥⇥ Y |V ZUW )G

(X �⇥⇥ Y |V ZU)G
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Z 

Y X 
Y X 

Causal inference for time-ordered variables

assume X ⇥⇤⇤ Y and X earlier. Then X � Y excluded, but still two options:

Example (Fukumizu 2007): barometer falls before it rains, but it does not
cause the rain

Conclusion: time order makes causal problem (slightly?) easier but does not
solve it
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X1 X2

X3 X4

Causal inference for time-ordered variables

assume X1, . . . , Xn are time-ordered and causally su�cient

• start with complete DAG

• remove as many parents as possible:

p 2 PAj can be removed if

Xj ?? p |PAj \ p

(going from potential arrows to true arrows “only” requires

statistical testing)
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Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

...
? ? ?

Time series and Granger causality

Does X cause Y and/or Y cause X?

exclude instantaeous e↵ects and common causes

• if

Yt 6?? X[t�1,�1) |Y[t�1,�1)

there must be arrows from X to Y (otherwise d-separation)

• Granger (1969): the past of X helps when predicting Yt from its past

• strength of causal influence often measured by transfer entropy

I(Yt;X[t�1,�1) |Y[t�1,�1))
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Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

Zt-2 Zt-1 Zt Zt+1

v v v

Confounded Granger

Hidden common cause Z relates X and Y

due to di↵erent time delays we have

Yt 6?? X[t�1,�1) |Y[t�1,�1)

but
Xt ?? Y[t�1,�1) |X[t�1,�1)

Granger infers X ! Y
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Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

Why transfer entropy does not

quantify causal strength (Ay & Polani, 2008)

deterministic mutual influence between X and Y

• although the influence is strong

I(Yt;X[t�1,�1) |Y[t�1,�1)) = 0 ,

because the past of Y already determines its future

• quantitatively still wrong for non-deterministic relation

• recent preprint on definitions of causal strength: Janzing, Balduzzi, Grosse-

Wentrup, Schölkopf 2012
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Inferring the causal DAG without time information

• Setting: given observed n-tuples drawn from p(X1, . . . , Xn), infer G

• Key postulates: Causal Markov condition and causal faithfulness
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Causal faithfulness
Spirtes, Glymour, Scheines

p is called faithful relative to G if only those independences hold
true that are implied by the Markov condition, i.e.,

(X ⇤⇤ Y |Z)G � (X ⇤⇤ Y |Z)p

Recall: Markov condition reads

(X ⇤⇤ Y |Z)G ⇥ (X ⇤⇤ Y |Z)p
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Y

X

Z

�

�

�

Examples of unfaithful distributions (1)

Cancellation of direct and indirect influence in linear models

X = UX

Y = ↵X + UY

Z = �X + �Z + UZ

with independent noise terms UX , UY , UZ

� + ↵� = 0 ) X ?? Z
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Y

X

Z =X�Y

(fair coins)

Examples of unfaithful distributions (2)

binary causes with XOR as e↵ect

• for p(X), p(Y ) uniform: X ?? Z, Y ?? Z .
i.e., unfaithful (since X,Z and Y, Z are connected in the graph).

• for p(X), p(Y ) non-uniform: X 6?? Z, Y 6?? Z .
i.e., faithful

unfaithfulness considered unlikely because it only occures for
non-generic parameter values
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Conditional-independence based causal inference

Spirtes, Glymour, Scheines and Pearl

Causal Markov condition + Causal faithfulness:

• accept only those DAGs G as causal hypotheses for which

(X ?? Y |Z)G , (X ?? Y |Z)p .

• identifies causal DAG up to Markov equivalence class

(DAGs that imply the same conditional independences)
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Markov equivalence class

Theorem (Verma and Pearl, 1990): two DAGs are Markov

equivalent i↵ they have the same skeleton and the same

v-structures.

skeleton: corresponding undirected graph

v-structure: substructure X ! Y  Z with no edge between

X and Z
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X Y Z

X Y Z

X Y Z

Markov equivalent DAGs

same skeleton, no v-structure

X �� Z |Y
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Markov equivalent DAGs

same skeleton, same v-structure at W
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Algorithmic construction of causal hypotheses

IC algorithm by Verma & Pearl (1990) to reconstruct DAG from p

idea:

1. Construct skeleton

2. Find v-structures

3. direct further edges that follow from

• graph is acyclic

• all v-structures have been found in 2)
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Construct skeleton

Theorem: X and Y are linked by an edge i↵ there is no set SXY

that d-separates them,

(X ?? Y |SXY )G .

Explanation: dependence that is due to indirect links can be

screened o↵ by conditioning

X ?? Y |{Z,W} .

Faithfulness implies: edge X � Y exists i↵ there is a set SX,Y

such that

(X ?? Y |SXY )p .

SXY is called a Sepset for X,Y
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E�cient construction of skeleton

PC algorithm by Spirtes & Glymour (1991)

iteration over size of Sepset

1. remove all edges X � Y with X ⇤⇤ Y

2. remove all edges X � Y for which there is a neighbor Z ⇥= Y
of X with X ⇤⇤ Y |Z

3. remove all edges X � Y for which there are two neighbors

Z1, Z2 ⇥= Y of X with X ⇤⇤ Y |Z1, Z2

4. ...
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Advantages

• many edges can be removed already for small sets

• testing all sets SXY containing the adjacencies

of X is su�cient

• depending on sparseness, algorithm only requires

independence tests with small conditioning tests

• polynomial for graphs of bounded degree
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Find v-structures

• given X � Y � Z with X and Y non-adjacent

• given SXY with X ⌥⌥ Y |SXY

a priori, there are 4 possible orientations:

X ⌅ Z ⌅ Y
X ⇤ Z ⌅ Y
X ⇤ Z ⇤ Y

�
⇤

⇥ Z ⇧ SXY

X ⌅ Z ⇤ Y Z ⌃⇧ SXY

Orientation rule: create v-structure if Z ⌃⇧ SXY
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Direct further edges (Rule 1)

(otherwise we get a new v-structure)
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�

�

�

�

�

�

Direct further edges (Rule 2)

(otherwise one gets a cycle)
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Direct further edges (Rule 3)

could not be completed
without creating a new v-structure
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Direct further edges (Rule 4)

could not be completed
without creating a cycle
or a new v-structure
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X Y Z W

U

X Y Z W

U

Examples

(taken from Spirtes et al, 2010)

true DAG

start with fully connected undirected graph
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remove all edges XY with X ⇥⇥ Y |�

X ⇥⇥ W Y ⇥⇥ W

remove all edges having Sepset of size 1

X ⇥⇥ Z |Y X ⇥⇥ U |Y Y ⇥⇥ U |Z W ⇥⇥ U |Z

X Y Z W

U

X Y Z W

U
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X Y Z W

U

X Y Z W

U

find v-structure

Z 62 SYW

orient further edges (no further v-structure)

edge X � Y remains undirected
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Conditional independence tests

• discrete case: contingency tables

• multi-variate gaussian case:

covariance matrix

non-Gaussian continuous case: challenging, recent progress
via reproducing kernel Hilbert spaces (Fukumizu...Zhang...)
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Improvements

• CPC (conservative PC) by Ramsey, Zhang, Spirtes (1995)
uses weaker form of faithfulness

• FCI (fast causal inference) by Spirtes, Glymour, Scheines
(1993) and Spirtes, Meek, Richardson (1999) infers causal
links in the presence of latent common causes

• for implementations of the algorithms see homepage of the
TETRAD project at Carnegie Mellon University Pittsburgh
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Bayesian approach e.g. Cooper, Heckerman, Meek (1997)

idea:

• The conditionals p(Xj |PAj) are free parameters in the
factorization

p(X1, . . . , Xn) =
n�

j=1

p(Xj |PAj)

• define prior over possible DAGs

• define priors on the parameter space of each DAG

• compute posterior probabilities of DAGs

implicit preference of faithful DAGs

Note: whether Markov equivalent DAGs obtain the same
posterior probability depends on the prior
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Large scale evaluation of PC-related approach

Maathuis, Colombo, Kalisch & Bühlmann (2007)

Given

• Observational data: expression profiles of 5,361 genes of yeast (wild
type)

• Interventional data: expression profiles of 5,361 genes for interventions
on 234 genes

Evaluation:

• use observational data to select the genes that are most influenced by the
interventions
(new method: compute lower bound on the e�ect over all equivalent
DAGs)

• compare with those selected from interventional data

success rates clearly significant: e.g. 33 true positive instead of 5
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INTERVAL? 
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Kernel Independence Testing (Gretton et al., 2007) 

k bounded p.d. kernel; P Borel probability measure

Define the kernel mean map

µ : P 7! E

x⇠P

[k(x, .)].

Theorem: If k is universal, µ is injective.

Discussion: a measure can be represented as an element of the
RKHS associated with k without loss of information.

Let’s represent p(X, Y ) and p(X)p(Y ) — they will only map to the
same element if they are equal, i.e., if X ?? Y .
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Kernel Independence Testing: HSIC  

Corollary: x ?? y () � := kµ(p
xy

)� µ(p
x

⇥ p

y

)k = 0.

• For k((x, y), (x0
, y

0)) = k

x

(x, x0)k
y

(y, y0):

�2 = HS-norm of cross-covariance operator between the two RKHSes
(HSIC, Gretton et al., 2005)

• empirical estimator 1
n

2 tr[K
x

K

y

] (ignoring centering)

• Why does this characterize independence: x ?? y i↵

sup
f,g 2 RHKS unit balls

cov(f(x), g(y)) = 0

(cf. Kernel ICA, Bach & Jordan, 2002)
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Hilbert-Schmidt Normalized Independence Criterion
(Fukumizu et al., 2007)

• normalize out variance of X and Y to get HSNIC; can be shown to equal
the mean squared contingency

Z ✓
p(x, y)

p(x)p(y)
� 1

◆
dp(x, y)

independent of the (characteristic/universal) kernel

• can be shown to be upper bounded by the mutual information,

HSNIC(X,Y )  MI(X,Y ) =

Z
log

✓
p(x, y)

p(x)p(y)

◆
dp(x, y)
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Approximating the null distribution  

• to construct a test, need to compute the null distribution of our test
statistic (HSIC): how is the empirical HSIC distributed if X ?? Y ?

• can use a (complicated) asymptotic expression for HSIC (Gretton et al.,
2008), but there’s an easy practical method to generate samples consis-
tent with the null hypothesis (independence), and the original marginals
p(X), p(Y ):

• given a permutation �, turn (x1, y1), . . . , (xn, yn) into (x1, y�(1)), . . . , (xn, y�(n))

• the case of conditional independence is harder: given (x1, y1, z1), . . . , (xn, yn, zn),
need to generate samples consistent withX ?? Y |Z, and original p(X|Z), p(Y |Z).

• if z only takes few values, can permute within groups having the same
value of z (Fukumizu et al., 2007)

• general case is an open problem, but see e.g. Zhang et al., UAI 2011
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Equivalence of Markov conditions 

Theorem: the following are equivalent:

– Existence of a functional causal model

– Local Causal Markov condition: Xj statistically independent of non-
descendants, given parents

– Global Causal Markov condition: d-separation

– Factorization p(X1, . . . , Xn) =
Q

j p (Xj | PAj)

(subject to technical conditions)
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Local Markov ) factorization (Lauritzen 1996)

• proof by induction. Note the factorization is trivial for n = 1.

• assume that local Markov for n� 1 nodes implies

p(x1, . . . , xn�1) =

n�1Y

j=1

p(xj |paj) .

• By local Markov, Xn ?? NDn |PAn. Assume Xn is a terminal node, i.e.,

it has no descendants, then NDn = {X1, . . . , Xn�1}. Thus

Xn ?? {X1, . . . , Xn�1} |PAn

and hence the general decomposition

p(x1, . . . , xn) = p(xn|x1, . . . , xn�1)p(x1, . . . , xn�1).

becomes

p(x1, . . . , xn) = p(xn|pan)p(x1, . . . , xn�1).

• By induction,

p(x1, . . . , xn) =

nY

j=1

p(xj |paj) .
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Factorization ) global Markov

(Lauritzen 1996)

Need to prove (X ?? Y |Z)G ) (X ?? Y |Z)p.

Assume (X ?? Y |Z)G

• define the smallest subgraph G0
containing X,Y, Z

and all their ancestors

• consider moral graph G0m
(undirected graph containing

the edges of G0
and links between all parents)

• use results that relate factorization of probabilities with

separation in undirected graphs
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Global Markov ) local Markov

Know that if Z d-separates X,Y , then X ?? Y |Z.
Need to show that Xj ?? NDj |PAj .

Simply need to show that the parents PAj d-separateXj from its non-descendants
NDj :

All paths connecting Xj and NDj include a P 2 PAj , but never as a collider

·! P  Xj

Hence all paths are chains
·! P ! Xj

or forks
· P ! Xj

Therefore, the parents block every path between Xj and NDj .
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X1
X2

X3

X4

X1
X2

X3

X4

G G'

functional model ) local Markov condition

(Pearl 2000)

• augmented DAG G0
contains unobserved noise

• local Markov-condition holds for G0
:

(i): the unexplained noise terms Uj are jointly independent, and thus

(unconditionally) independent of their non-descendants

(ii): for the Xj , we have

Xj ?? ND0
j |PA0

j

because Xj is a (deterministic) function of PA0
j .

• local Markov in G0
implies global Markov in G0

• global Markov in G0
implies local Markov in G (proof as last slide)
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factorization ) functional model

Generate each p(Xj |PAj) in

p(X1, . . . , Xn) =

Yn

j=1
p(Xj |PAj)

by a deterministic function and a noise variable.

• Idea: “encode” Xj |paj (for all values paj) into the noise Uj , and pick out

the right one depending on paj .

• formally, Uj is a map satisfying

paj 7! Xj |paj

• define structural equation

fj(paj , Uj) := Uj(paj) = Xj |paj

• special case: if PAj only takes d values, Uj is an d-dimensional random

vector, and the structural equation picks out a component of the vector

• Note that we could use another joint distribution of the components of Uj ,

with the same marginals. The causal graphical model only depends on the

marginals, but the structural equation model contains more information.
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Y

X

=g(X),        U  chooses g ∈ G   
                  

U

di↵erent point of view

• G denotes set of deterministic mechanisms

• U randomly chooses a mechanism
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Y

X

U

= g(X), U chooses g � {ID, NOT, 1, 0}

Example: X, Y binary

the same p(X,Y ) can be induced by di↵erent distributions on G:

• model 1 (no causal link from X to Y )

P (g = 0) = 1/2, P (g = 1) = 1/2

• model 2 (random switching between ID and NOT )

P (g = ID) = 1/2, P (g = NOT ) = 1/2

both induce the uniform distribution for Y , independent of X
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Restricting the Functional Model 

• general functional model

Xi = fi(Parentsi,Noisei)

Note: if Noisei can take N di↵erent values, then it could switch

randomly between mechanisms g1i (Parentsi), . . . , g
N
i (Parentsi)

• additive noise model

Xi = fi(Parentsi) + Noisei

(Noisei jointly independent)
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X Y ? 

Causal Inference with Additive Noise, 2-Variable Case 

Hoyer et al.: Nonlinear causal discovery with additive noise models. NIPS 21, 2009
Peters et al.: Detecting the Direction of Causal Time Series. ICML 2009

Forward model:

y := f(x) + n, with x ?? n

Identifiability: when is there a

backward model of the same form?



Dominik Janzing & Bernhard Schölkopf,  June 26, 2012 

Identifiability Result (Hoyer, Janzing, Mooij, Peters, Schölkopf, 2008) 

Theorem 1 Let the joint probability density of x and y be given by

p(x, y) = p

n

(y � f(x))p

x

(x) , (1)

where p

n

, p

x

are positive probability densities on R. If there is a backward model

p(x, y) = p

ñ

(x� g(y))p

y

(y) , (2)

then, denoting ⌫ := log p

n

and ⇠ := log p

x

and assuming su�cient di↵erentia-

bility, the triple (f, p

x

, p

n

) must satisfy the following di↵erential equation for all

x, y with ⌫

00
(y � f(x))f

0
(x) 6= 0:

⇠

000
= ⇠

00
✓
�⌫

000
f

0

⌫

00 +

f

00

f

0

◆
� 2⌫

00
f

00
f

0
+ ⌫

0
f

000
+

⌫

0
⌫

000
f

00
f

0

⌫

00 � ⌫

0
(f

00
)

2

f

0 , (3)

where we have skipped the arguments y�f(x), x, and x for ⌫, ⇠, and f and their

derivatives, respectively. Moreover, if for a fixed pair (f, ⌫) there exists y 2 R
such that ⌫

00
(y � f(x))f

0
(x) 6= 0 for all but a countable set of points x 2 R, the

set of all p

x

for which p has a backward model is contained in a 3-dimensional

a�ne space.

Corollary 1 Assume that ⌫

000
= ⇠

000
= 0 everywhere. If a backward model

exists, then f is linear.
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Causal Inference Method 

Prefer the causal direction that can better be fit

with an additive noise model.

Implementation:

• Compute a function f as non-linear regression of X on Y

• Compute the residual

E := Y � f (X)

• check whether E and X are statistically independent (un-

correlated is not enough)
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Experiments 

Relation between altitude (cause) and average temperature (effect) 
of places in Germany 
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• Generalization to post-nonlinear additive noise models: Zhang
& Hyvärinen: On the Identifiability of the Post-Nonlinear Causal
Model, UAI 2009

• Generalization to graphs with more than two vertices:
Peters, Mooij, Janzing, Schölkopf: Identifiability of Causal Graphs
using Functional Models, UAI 2011

• Generalization to two-vertex-graphs with loops:
Mooij, Janzing, Heskes, Schölkopf: Causal discovery with Cyclic
additive noise models, NIPS 2011
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Independence-based Regression (Mooij et al., 2009) 

• Problem: many regression methods assume a particular noise
distribution; if this is incorrect, the residuals may become de-
pendent

• Solution: minimize dependence of residuals rather than maxi-
mizing likelihood of data in regression objective

• Use HSIC as a dependence measure

Mooij, Janzing, Peters, Schölkopf: Regression by dependence minimization and its application

to causal inference. ICML 2009.

Yamada & Sugiyama: Dependence Minimizing Regression with Model Selection for Non-

Linear Causal Inference under Non-Gaussian Noise. AAAI 2010.



Dominik Janzing & Bernhard Schölkopf,  June 26, 2012 

?

Y X

Detection of Confounders 

*
*
*
*
***

*
*

*
*

**
****

*
*

*
* *

******
* *

*

**
*
* * *

*
*
*

* *

*
*

*

*
y

x

Given p (X,Y ), infer whether

I X ! Y

I Y ! X

I X  T ! Y for some (possibly) unobserved variable

T

• Confounded additive noise (CAN) models

X = fX (T ) + UX

Y = fY (T ) + UY

with functions fX , fY and UX , UY , T jointly independent

Note: includes the case

Y = f (X) + U
by setting fX = id and UX = 0.

• Estimate (fX (T ), fY (T )) using dimensionality reduction

• If UX or UY is close to zero, output ’no confounder’

• Identifiability result for small noise

Janzing, Peters, Mooij, Schölkopf: Identifying latent confounders using additive noise models.

UAI 2009
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However, employing properties of the noise is not the only way of inferring cause
and e↵ect.

What about the noiseless case?
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Inferring deterministic causal relations 

Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Schölkopf: Inferring deterministic causal relations, UAI 2010 

? 

Y X 

 
•  Assumption: y = f(x) with invertible f 
•  Cannot use noise properties 

• Idea: If X ! Y then f and the density pX are chosen “inde-
pendently” by nature

• Hence, peaks of the density pX do not correlate with the slope
of f .

• Then, peaks of pY necessarily correlate with the slope of f �1.
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Causal independence implies anticausal dependence 
Assume that f is a monotonously increasing bijection of [0, 1].

View p

x

and log f

0
as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):

Cov (log f

0
, p

x

) = 0

Note: this is equivalent to

Z 1

0
log f

0
(x)p(x)dx =

Z 1

0
log f

0
(x)dx,

since

Cov (log f

0
, p

x

) = E [ log f

0·p
x

]�E [ log f

0
]E [ p

x

] = E [ log f

0·p
x

]�E [ log f

0
].

Proposition:

Cov (log f

�10
, p

y

) � 0

with equality i↵ f = Id.
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u

x

, u

y

uniform densities for x, y

v

x

, v

y

densities for x, y induced by transforming u

y

, u

x

via f

�1
and f

Equivalent formulations of the postulate:

Additivity of Entropy:

S (p

y

)� S (p

x

) = S (v

y

)� S (u

x

)

Orthogonality (information geometric):

D (p

x

k v
x

) = D (p

x

ku
x

) +D (u

x

k v
x

)

which can be rewritten as

D (p

y

ku
y

) = D (p

x

ku
x

) +D (v

y

ku
y

)

Interpretation:

irregularity of p

y

= irregularity of p

x

+ irregularity introduced by f
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Slope-Based Estimator 
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80 Cause-Effect Pairs 
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80 Cause-Effect Pairs − Examples 
!"# $ !"# % &"'"()' *#+,-& '#,'.

/"0#111$ 23'0',&) 4)5/)#"',#) 676 ⇥
/"0#1118 2*) 9:0-*(; <)-*'. 2="3+-) ⇥
/"0#11$% 2*) 7"*) /)# .+,# >)-(,( 0->+5) ⇥
/"0#11%8 >)5)-' >+5/#)((0!) ('#)-*'. >+->#)')?&"'" ⇥
/"0#11@@ &"03A "3>+.+3 >+-(,5/'0+- 5>! 5)"- >+#/,(>,3"# !+3,5) 30!)# &0(+#&)#( ⇥
/"0#11B1 2*) &0"('+30> =3++& /#)((,#) /05" 0-&0"- ⇥
/"0#11B% &"A ')5/)#"',#) CD E"-F0-* ⇥
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/"0#11KB &#0-L0-* M"')# ">>)(( 0-J"-' 5+#'"30'A #"') NO&"'" ⇥
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IGCI: 
Deterministic 
Method 
 
LINGAM: 
Shimizu et al., 
2006 
 
AN: 
Additive Noise 
Model (nonlinear) 
 
PNL: 
AN with post- 
nonlinearity 
 
GPI: 
Mooij et al., 
2010 
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Causal Learning and Anticausal Learning 
• example 1: predict gene from mRNA sequence

(source: www.odec.ca)

• example 2: predict class membership from handwritten digit

X Y

NX NY

φ
id

prediction

X Y

NX NY

φ
id

prediction

Source: http://commons.wikimedia.org/wiki/File:Peptide_syn.png 
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X Y

NX NY

φ
id

prediction

X Y

NX NY

φ
id

prediction

Covariate Shift and Semi-Supervised Learning 

• covariate shift (i.e., p(X) changes): mechanism

p(Y |X) is una↵ected by assumption

• semi-supervised learning: impossible, since

p(X) contains no information about p(Y |X)

• transfer learning (NX , NY change, ' not):

could be done by additive noise model with

conditionally independent noise

• covariate shift (i.e., p(X) changes): need to de-

cide if change is due to mechanism p(X|Y ) or

cause distribution p(Y ) (nontrivial)

• semi-supervised learning: possible, since p(X)

contains information about p(Y |X) — e.g.,

cluster assumption.

• transfer learning: as above

Assumption: p(cause) and mechanism p(e↵ect |cause) are indepen-

dently chosen by nature;

Goal: learn X 7! Y , i.e., estimate (properties of) p(Y |X)

causal mechanism '

(Storkey, 2009; Schölkopf et al., ICML 2012) 
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High-dimensional variables

Let X and Y be n and m dimensional variables (possibly Gaussian), infer

whether the causal model reads:

Y = AX + U or X =

eAY +

eU

Idea:

• P (X) described by covariance matrix ⌃X

• P (Y |X) described by structure matrix A

• hence ⌃X and A are “independent” if X ! Y

• therefore the trace formula holds:

1

n
tr(A⌃XAT

) ⇡ 1

n
tr(⌃X)

1

n
tr(AAT

)

• uses

1
d tr(CD) ⇡ 1

d tr(C)

1
d tr(D), for two d-dimensional matrices whose

entries are drawn independently
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Deterministic case

Y = AX or X = A�1Y

Theorem (Janzing, Hoyer, Schölkopf 2010): if trace formula

1

n
tr(A⌃XAT ) =

1

n
tr(⌃X)

1

n
tr(AAT )

for X ! Y holds exactly, then it is violated for Y ! X:

1

n
tr(A�1⌃Y A

�T ) <
1

n
tr(⌃Y )

1

n
tr(A�1A�T )

Inference rule: Prefer the direction for which violation of trace formula is
smaller (works also for the nondeterministic case)
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Causal Inference for Individual Objects (Janzing & Schölkopf, 2010) 
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Causal Markov Conditions 

• Recall the (Local) Causal Markov condition:

An observable is statistically independent of its non-descendants, given

parents

• Reformulation:

Given all direct causes of an observable, its non-e↵ects provide no addi-

tional statistical information on it
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Causal Markov Conditions 

• Generalization:

Given all direct causes of an observable, its non-e↵ects provide no addi-

tional statistical information on it

• Algorithmic Causal Markov Condition:

Given all direct causes of an object, its non-e↵ects provide no additional

algorithmic information on it
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Kolmogorov complexity 
(Kolmogorov 1965, Chaitin 1966, Solmono↵ 1964)

of a binary string x

• K(x) := length of the shortest program with output x (on a

Turing machine)

• interpretation: number of bits required to describe the rule that

generates x

• equality ”=” is always understood up to string-independent

additive constants

• K(x) is uncomputable

• probability-free definition of information content
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Conditional Kolmogorov complexity 

• K(y | x): length of the shortest program that generates y

from the shortest description of the input x.

• number of bits required for describing y if the shortest descrip-

tion of x is given

• note: x can be generated from its shortest description but not

vice versa because there is no algorithmic way to

find the shortest compression
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Algorithmic mutual information (Chaitin, Gacs) 

Information of x about y

• I (x : y) := K(x) + K(y)�K(x, y)

= K(x)�K(x | y) = K(y)�K(y |x)

• Interpretation: number of bits saved when compressing x, y
jointly rather than independently

• Algorithmic independence x ⇧⇧ y : ⇤⌅ I (x : y) = 0
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 Conditional algorithmic mutual information 

Information that x has on y (and vice versa) when z is given

• I (x : y | z) := K (x | z) +K (y | z)�K (x, y | z)

• Analogy to statistical mutual information:

I (X : Y |Z) = S (X |Z) + S (Y |Z)� S (X, Y |Z)

• Conditional algor. independence x ?? y | z :() I (x : y | z) = 0
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Algorithmic mutual information: example 
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Postulate: Local Algorithmic Markov Condition 

Let x1, . . . , xn be observations (formalized as strings). Given its di-

rect causes paj, every xj is conditionally algorithmically independent

of its non-e↵ects ndj

xj ?? ndj | paj
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Equivalence of Algorithmic Markov Conditions 
For n strings x1, . . . , xn the following conditions are equivalent

• Local Markov condition

I (xj : ndj | paj ) = 0

• Global Markov condition:

If R d-separates S and T then I (S : T |R) = 0

• Recursion formula for joint complexity

K(x1, . . . , xn) =

nX

j=1

K(xj | paj)

Janzing & Schölkopf, IEEE Trans. Information Theory, 2010
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Algorithmic model of causality 

xj	
  

uj	
  
paj	
  

xj	
  

paj	
  

=uj(paj)	
  

• for every node xj there exists a program uj that computes xj

from its parents paj

• all uj are jointly independent

• the program uj represents the causal mechanism that generates

the e↵ect from its causes

• uj are the analog of the unobserved noise terms in the statistical

functional model

Theorem: this model implies the algorithmic Markov condition
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“Independent”= algorithmically independent?

Postulate (Janzing & Schölkopf, 2010, inspired by Lemeire & Dirkx, 2006):

The causal conditionals p(Xj |PAj) are algorithmically independent

• special case: p(X) and p(Y |X) are alg. independent for X ! Y

• can be used as justification for novel inference rules (e.g., for additive noise

models: Steudel & Janzing 2010)

• excludes many, but not all violations of faithfulness (Lemeire & Janzing,

2012)
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Generalized independences Steudel, Janzing, Schölkopf (2010)

Given n objects O := {x1, . . . , xn}

Observation: if a function R : 2

O ! R+
0 is submodular, i.e.,

R(S) +R(T ) � R(S [ T ) +R(S \ T ) 8S, T ⇢ O

then

I(A;B |C) := R(A [ C) +R(B [ C)�R(A [B [ C)�R(C) � 0

for all disjoint sets A,B,C ⇢ O

Interpretation: I measures conditional dependence

(replace R with Shannon entropy to obtain usual mutual information)
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Generalized Markov condition

Theorem: the following conditions are equivalent for a DAG G

• local Markov condition

xj ?? ndj |paj

• global Markov condition: d-separation implies independence

• sum rule

R(x1, . . . , xn) =

nX

j=1

R(xj |paj)

–but can we postulate that the conditions hold w.r.t. to the true DAG?
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xj	
   uj	
  

paj	
  

Generalized functional model

Theorem:

• assume there are unobserved objects u1, . . . , un

• assume
R(xj , paj , uj) = R(paj , uj)

(xj contains only information that is already contained in its parents +
noise object)

then x1, . . . , xn satisfy the Markov conditions

⇥ causal Markov condition is justified provided that mechanisms fit to infor-
mation measure
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Generalized PC

PC algorithm also works with generalized conditional independence

Examples:

1. R := number of di�erent words in a text

2. R := compression length (e.g. Lempel Ziv is approximately submodular)

3. R := logarithm of period length of a periodic function

example 2 yielded reasonable results on simple real texts (di�erent versions of
a paper abstract)
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Summary

• conventional causal inference algorithms use conditional statistical depen-
dences

• more recent approaches also use other properties of the joint distribution

• non-statistical dependences also tell us something about causal directions
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Selection within Markov equivalence classes

di�erent approaches

• some “independence” condition between p(Xj |PAj)
Information-geometric method, Trace Method

• restricting conditionals/functional models to subsets
Additive-noise models, post-nonlinear model

• define priors on p(Xj |PAj) that can yield di�erent posteriors for equiva-
lent DAGs
Gaussian process based prior by Mooij, Stegle, Janzing, Schölkopf (2010)

• ?



Dominik Janzing & Bernhard Schölkopf,  June 26, 2012 

Jonas Peters,   Kun Zhang,      Joris Mooij,   Oliver Stegle, Eleni Sgouritsa, Jakob Zscheischler 

Thank you for your attention 


