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Roadmap

informal motivation
functional causal models

causal graphical models;
d-separation, Markov conditions, faithfulness

formalizing interventions
causal inference...

— using time order

— using conditional independences

— using restricted function classes

— using “independence” of mechanisms

— not using statistics

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Country Area Storks = Humans | Birth rate
(km?) | (pairs) (10 (10°/yr)

. Albania 28,750 100 32 83

Dependence vs. Causation A | BIB e 28
Belgium | 30,520 1 99 | 118

Bulgaria | 111,000 = 5000 9.0 | 117

Denmark ’ 43,100 ' 9 . 5.1 ‘ 59

France | 544,000 140 6 | 774

Storks Deliver Babies (p= 0.008) Germany | 357,000 | 3300 | 78 901
Robert Matthows Greece | 132000 2500 10 | 106
Holland 41,900 4 15 188

Article first published online: 25 DEC 2001 m = Teaching Statistics Hungary 93,000 5000 T 124
DOI: 10.1111/1467-0639.00013 \Blgljr:s::bg;sue 20 [ raly o s s | ssi
Poland 312,680 = 30,000 mailto:rajm@compuserve.com

Portugal | 92,390 1500 10 | 120

Romania | 237,500 5000 23 | 367

Spain | 504,750 8000 | 39 | 439

Switzerland ' 41,290 150 | 6.7 ‘ 82

Turkey | 779,450 25000 56 | 1576

Table 1. Geographic, human and stork data for 17
European countries

Cargo cults— religious practices in pacific tribes around world war 11,
trying to obtain wealth (the "cargo") by building mock landing strips etc.

...the term cargo cult... is also idiomatically used (in the words of wikipedia)

"to mean any group of people who imitate the superficial exterior of a process

or system without having any understanding of the underlying substance".
(source: http://philosophyisfashionable.blogspot.com/)
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BACKGROUND

Coffee is one of the most widely consumed beverages, but the
association between coffee consumption and the risk of death
remains unclear.

Full Text of Background...

METHODS

We examined the association of coffee drinking with subsequent total
and cause-specific mortality among 229,119 men and 173,141
women in the National Institutes of Health—-AARP Diet and Health
Study who were 50 to 71 years of age at baseline. Participants with
cancer, heart disease, and stroke were excluded. Coffee
consumption was assessed once at baseline.

We present risk estimates separately for men and women. Multivariate models were adjusted for
the following baseline factors: age; body-mass index (BMI); race or ethnic group; level of education;
alcohol consumption; the number of cigarettes smoked per day, use or nonuse of pipes or cigars,
and time of smoking cessation (<1 year, 1 to <5 years, 5 to <10 years, or 210 years before
baseline); health status; presence or absence of diabetes; marital status; level of physical activity;
total energy intake; consumption of fruits, vegetables, red meat, white meat, and saturated fat; and
use of any vitamin supplement (yes vs. no). In addition, risk estimates for death from cancer were
adjusted for history of cancer (other than nonmelanoma skin cancer) in a first-degree relative (yes
vs. no). For women, status with respect to postmenopausal hormone therapy was also included in

multivariate models. Less than 5% of the cohort lacked any single covariate; for each covariate, we
N/

RESULTS

During 5,148,760 person-years of follow-up between 1995 and 2008, a
total of 33,731 men and 18,784 women died. In age-adjusted models,
the risk of death was increased among coffee drinkers. However,
coffee drinkers were also more likely to smoke, and, after adjustment
for tobacco-smoking status and other potential confounders, there
was a significant inverse association between coffee consumption
and mortality. Adjusted hazard ratios for death among men who drank

CONCLUSIONS

In this large prospective study, coffee consumption was inversely
associated with total and cause-specific mortality. Whether this was
a causal or associational finding cannot be determined from our data.
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Deutsches Kinderkrebsregister untersucht
Haufigkeit von Krebserkrankungen bei
Kindern in der Nahe von Kernkraftwerken

Neue Studie veroffentlicht

Immer wieder wird der Verdacht geauBert, dass Kinder in der Nahe von
Kernkraftwerken haufiger an Krebs erkranken. Eine frGhere Studie des
Kinderkrebsregisters mit Kindern unter 15 Jahren schien darauf hinzudeuten,
dass speziell in den ersten Lebensjahren das Leukémie-Risiko in den
betreffenden Gegenden erhoéht war.

In diesen Tagen erscheinen zwei wissenschaftliche Verodffentlichungen tber

eine neue Studie des Deutschen Kinderkrebsregisters in Mainz. Das Ergebnis:

In Deutschland findet man einen Zusammenhang zwischen der Nahe der
Wohnung zu einem Kernkraftwerk und der Haufigkeit, mit der Kinder vor
ihrem finften Geburtstag an Krebs und besonders an Leukamie erkranken.
Allerdings erlaubt die Studie keine Aussage daruber, wodurch sich die
beobachtete Erhéhung der Anzahl von Kinderkrebsfallen in der Umgebung
deutscher Kernkraftwerke erklaren lasst. So kommt nach dem heutigen
Wissensstand Strahlung, die von Kernkraftwerken im Normalbetrieb ausgeht,
als Ursache flr die beobachtete Risikoerhohung nicht in Betracht. Denkbar
ware, dass bis jetzt noch unbekannte Faktoren beteiligt sind oder dass es
sich doch um Zufall handelt.

| Weiterbildung | International |Presse

b4 Kontakt

Dr. Peter Kaatsch
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“Correlation does not tell us anything about causality”

» Better to talk of dependence than correlation

* Most statisticians would agree that causality does tell us
something about dependence

* But dependence does tell us something causality too:

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Statistical Implications of Causality

Reichenbach’s

Common Cause Principle
links causality and probability:

(i) if X and Y are statistically
dependent, then there is a Z
causally influencing both; special cases:

(ii) Z screens X and Y from each ®(_@
other (given Z, the observables

X and Y become independent)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Notation

o A B event

e X.Y Z random variable

e 1 value of a random variable

e Pr probability measure

e Py probability distribution of X

e p density

e px or p(X) density of Py

e p(x) density of Px evaluated at the point z

e always assume the existence of a joint density, w.r.t. a product
measure

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Independence
Two events A and B are called independent if
Pr(AN B) = Pr(A) - Pr(B).

A1, ..., A, are called independent if for every subset S C {1,...,n}
we have

Pr (ﬂ AZ-) = [ Pr(4).

€5 €S

Note: for n > 3, pairwise independence Pr(A;NA,) = Pr(A;)-Pr(A,)
for all ¢, 7 does not imply independence.
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Independence of random variables

Two real-valued random variables X and Y are called independent,

X LY,

if for every a,b € R, the events {X < a} and {Y < b} are indepen-
dent.

Equivalently, in terms of densities: for all x,,

p(z,y) = p(z)p(y)

Note:
If X I Y, then F|XY] = FE[X]|E|Y], and cov|X,Y] = F[XY]| - E|X|E|Y] =0.

The converse is not true: cov[X,Y]=0% X 1L Y.

However, we have, for large F: (Vf,g € F :cov[f(X),9(Y)]=0)=X 1LY

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Conditional Independence of random variables

Two real-valued random variables X and Y are called conditionally
independent given /£,

(X LY)|Z or X LY|Z or (X LY|Z),
if
p(z,y|z) = p(z|z)p(y|2)
for all x,y, and for all z s.t. p(z) > 0.

Note: conditional independence neither implies nor is implied by
independence.

I.e., there are X, Y, Z such that we have only independence or only
conditional independence.

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



COMMUNICATIONS

Functional Causal Model (Pear! et al.) \

Judea Pearl

e Set of observables X1,...,X,,

e directed acyclic graph G with vertices Xq,..., X,
e Semantics: parents = direct causes

o X, = fi(ParentsOf;, Noise;), with independent Noisey, ..., Noise,.
e “Noise” means “unexplained” (or “exogenous”), we use U;

e Can add requirement that fq,..., f,,Noisey,...,Noise, “independent”
(cf. Lemeire € Dirkz 2006, Janzing € Schélkopf 2010 — more below)

‘ ‘ parents of X (PAJ,)
O\ N/
o— =f (PA, U)

™0

pf, June 26, 2012




Functional Causal Model, ctd.

e this model can be shown to satisfy Reichenbach’s principle:

1. functions of independent variables are independent, hence dependence
can only arise in two vertices that depend (partly) on the same noise
term(s).

2. if we condition on these noise terms, the variables become independent

Iz
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Functional Causal Model, ctd.

e Independence of noises is a form of ”causal sufficiency:” if the noises were
dependent, then Reichenbach’s principle would tell us the causal graph is
incomplete

e Interventions are realized by replacing functions by values

Iz
Q\fX fy

e the model entails a joint distribution p(Xi,...,X,). Questions:

(1) What can we say about it?

(2) Can we recover G from p?

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Functional Model and Markov conditions
(Lauritzen 1996, Pearl 2000)

Theorem: the following are equivalent:

— Existence of a functional causal model

— Local Causal Markov condition: X; statistically independent of non-
descendants, given parents (i.e.: every information exchange with its non-

descendants involves its parents)

— Global Causal Markov condition: d-separation (characterizes the set of

independences implied by local Markov condition)

— Factorization p(Xi,...,X,) = Hj p(Xj | Parentsj) (conditionals as

causal mechanisms generating statistical dependence)
(subject to technical conditions)

non-descendh

.\‘:/)_(_j //Il\'”"/\/_ ™
/ = ()

. _/ descendants

Dominik Janzing & bernhard dScholkopf, June £0, ZU1Z

parents of Xj




Pearl’s do-calculus

e Motivation: goal of causality is to infer the effect of
interventions

e distribution of Y given that X is set to x:

p(Y|doX =x) or p(Y|dox)

e can be computed from p and G

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Computing p(Xy,..., X,|dox;)

from p(Xy,...,X,) and G

e Start with causal factorization

p(X17 s e 7Xn)

||
—
.
s
R
2

e Replace p(X;|PA;) with dx,..

p(X1, ..., Xpldow;) == | | p(X;|PA;)6x,0,
j#i

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Computing p(X;|do x;)

summation over x; yields

p(Xl, e 7Xz'—1aXi—|—17 “. ,Xn‘dOiEz) = Hp(XJ‘PA](CEz)) .
J#i

e distribution of X; with j # ¢ is given by dropping p(X;|PA;) and substi-
tuting x; into PA,; to get PA,(x;).

e obtain p(Xy|doz;) by marginalization

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Examples for p(.|dox) = p(.|z)

X—0

% @\@ ®




Examples for p(.|dox) # p(.|z)

e p(Yldoz) = P(Y) # P(Y|z)

©—

e p(Yl|dox) = P(Y)# P(Y|z)

at




Example: controlling for confounding

K

X LY partly due to the Z and partly due to X — Y

e causal factorization

p(X,Y, Z) = p(Z2)p(X|Z)p(Y|X, Z)

e replace P(X|Z) with dx.

p(Y, Zldox) = p(Z) ox. p(Y|X, Z)
e marginalize

p(Y|dox) = Zp p(Y|x, z) # Zp zlx)p(Y|x, z) = p(Y|x).

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Identifiability problem

e.g. Tian & Pearl (2002)

e given the causal DAG G and two nodes X;, X

e which nodes need to be observed to compute p(X;|dox;) ?

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Inferring the DAG

e Key postulate: Causal Markov condition

e Lissential mathematical concept: d-separation

(describes the conditional independences required by a causal DAG)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




d-separation (Pearl 1988)

Path = sequence of pairwise distinct nodes where consecutive ones are adjacent

A path ¢ is said to be blocked by the set Z if

e (¢ contains a chain 1 — m — j or a fork i < m — j such
that the middle node is in Z, or

e g contains a collider 1 — m <« j such that the middle node
is not in Z and such that no descendant of m is in Z.

Z is said to d-separate X and Y in the DAG G, formally
(X LY |Z)q

if Z blocks every path from a node in X to a node in Y.

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Example (blocking of paths)

path from X to Y is blocked by conditioning on U or Z or both

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Example (unblocking of paths)

®—>< : — U j— @

e path from X to Y is blocked by 0

e unblocked by conditioning on Z or W or both

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Unblocking by conditioning on common effects

Berkson’s paradox (1946)

Example: X,Y, 7 bmary @ @

=XorY

XLY but X ALY|Z

e assume: in paper submissions quality of theory is independent
of quality of experiments

e papers get accepted for ICML if experiments or theory are
strong

e for accepted ICML-papers, quality of theory and experiments
are negatively correlated

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Asymmetry under inverting arrows

(Reichenbach 1956)

VARPON

X1y X LY
XLY|Z X1Y|Z

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Examples (d-separation)

(X LY |ZW)q
(X LY |ZUW)g
(X LY |VZUW)q

(X LY |VZU)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Causal inference for time-ordered variables

assume X [ Y and X earlier. Then X « Y excluded, but still two options:

Example (Fukumizu 2007): barometer falls before it rains, but it does not
cause the rain

Conclusion: time order makes causal problem (slightly?) easier but does not
solve it

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Causal inference for time-ordered variables

assume Xq,...,X,, are time-ordered and causally sufficient

e start with complete DAG

)

)

e remove as many parents as possible:

p € PA; can be removed if

X; Lp|PA;\p

(going from potential arrows to true arrows “only” requires
statistical testing)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Time series and Granger causality

Does X cause Y and/or Y cause X7

exclude instantaeous effects and common causes

o if
Y L Xpio1,—00) [Yi—1,—00)

there must be arrows from X to Y (otherwise d-separation)
e Granger (1969): the past of X helps when predicting Y; from its past

e strength of causal influence often measured by transfer entropy

I(Ye; Xjt—1,—c0) [Y]t—1,—00))

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Confounded Granger

Hidden common cause Z relates X and Y

,_././7 0

- - - -

¢ Y ¢ s 2N
'

y4 [

, Z Z rz

t2 4 v L) t . v St ,

O-O"T0

due to different time delays we have

Y; 7M- X[t—l,—oo) ‘Y[t—l,—oo)

but
Xo AL Yo —o0) [ Xp—1,—00)

Granger infers X — Y

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Why transfer entropy does not
quantify causal strength (Ay & Polani, 2008)

deterministic mutual influence between X and Y

S

e although the influence is strong
I(Y; Xp—1,—00) [Yjt—1,-0)) = 0,
because the past of Y already determines its future

e quantitatively still wrong for non-deterministic relation

e recent preprint on definitions of causal strength: Janzing, Balduzzi, Grosse-
Wentrup, Scholkopf 2012

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Inferring the causal DAG without time information

e Setting: given observed n-tuples drawn from p(X;,...,X,), infer G

e Key postulates: Causal Markov condition and causal faithfulness

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Causal faithfulness

Spirtes, Glymour, Scheines

p is called faithful relative to GG if only those independences hold
true that are implied by the Markov condition, i.e.,

(X LY |Z)e <« (XL1Y|2),

Recall: Markov condition reads

(X LY|Z)e = (XLYI|Z),

Dominik Janzing & Bernhard Scholkopf, June 26, 2012



Examples of unfaithful distributions (1)

Cancellation of direct and indirect influence in linear models

X = Uy
Y = aX+Uy
7 = BX +~Z+Uy

with independent noise terms Ux, Uy, Uz

B+ay=0 = XIZ
/ \
O

@
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Examples of unfaithful distributions (2)

binary causes with XOR as effect

e for p(X),p(Y) uniform: X 1 Z) Y I Z.
i.e., unfaithful (since X, Z and Y, Z are connected in the graph).

e for p(X),p(Y) non-uniform: X A Z, Y A Z.

i.e., faithful

(fair coins)
O
\
@

unfaithfulness considered unlikely because it only occures for
non-generic parameter values

=X®Y

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Conditional-independence based causal inference
Spirtes, Glymour, Scheines and Pearl

Causal Markov condition + Causal faithfulness:
e accept only those DAGs GG as causal hypotheses for which

(X LY|Z)e & (XLY|2),.

e identifies causal DAG up to Markov equivalence class
(DAGs that imply the same conditional independences)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Markov equivalence class

Theorem (Verma and Pearl, 1990): two DAGs are Markov
equivalent iff they have the same skeleton and the same
v-structures.

skeleton: corresponding undirected graph
v-structure: substructure X — Y <« Z with no edge between
X and Z

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Markov equivalent DAGs

K==z
==z
K=~z

same skeleton, no v-structure

X1 Zy

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Markov equivalent DAGs




Algorithmic construction of causal hypotheses

IC algorithm by Verma & Pearl (1990) to reconstruct DAG from p

idea;:
1. Construct skeleton

2. Find v-structures

3. direct further edges that follow from

e graph is acyclic

e all v-structures have been found in 2)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Construct skeleton

Theorem: X and Y are linked by an edge iff there is no set Sxy

that d-separates them,
(X 1LY |Sxy)cg

Explanation: dependence that is due to indirect links can be

screened off by conditioning
/ @
®—* @‘—'®
¥ L@Q{Z Wy

Faithfulness implies: edge X — Y exists iff there is a set Sx y
such that

(X LY |Sxv)y-
Sxy is called a Sepset for X,Y

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Efficient construction of skeleton

PC algorithm by Spirtes & Glymour (1991)

iteration over size of Sepset

1. remove all edges X —Y with X 1L Y

2. remove all edges X — Y for which there is a neighbor Z #£ Y
of X with X Il Y |Z

3. remove all edges X — Y for which there are two neighbors
Zl,ZQ 7é Yof X with X 1LY ‘Zl,ZQ

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Advantages

e many edges can be removed already for small sets

e testing all sets Sxy containing the adjacencies
of X is sufficient

e depending on sparseness, algorithm only requires
independence tests with small conditioning tests

e polynomial for graphs of bounded degree

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Find v-structures

e given X — Y — Z with X and Y non-adjacent
e civen Sxy with X I Y |SXY

a priori, there are 4 possible orientations:

X >7Z->Y )
X—Z-=Y » Z € Sxy
X — /A «Y )
X -/ «Y ZQSXY

Orientation rule: create v-structure if Z € Sxy

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Direct further edges (Rule 1)
-0 0@
4
®-0-0

(otherwise we get a new v-structure)
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Direct further edges (Rule 2)

(otherwise one gets a cycle)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Direct further edges (Rule 3)

o e

\6'/ould not be completed

without creating a new v-structure

Dominik Janzing & Bernhard Scholkopf, June 26, 2012



Direct further edges (Rule 4)

could not be completed
without creating a cycle
or a new v-structure

Dominik Janzing & Bernhard Scholkopf, June 26, 2012



Examples

(taken from Spirtes et al, 2010)

true DAG @_»@_»@4_ @
U

start with fully connected undirected graph

A
@Q\%/@
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remove all edges Xy with X 1L Y |()

AP
®<g§%)3

X1W Y UIW

remove all edges having Sepset of size 1

x—v—2—w
v

XLZY XAU|Y YLU|Z WALU|Z




find v-structure
Xy zew
v

Z & Syw
orient further edges (no further v-structure)
v

edge X — Y remains undirected
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Conditional independence tests

e discrete case: contingency tables

e multi-variate gaussian case:

covariance matrix

non-Gaussian continuous case: challenging, recent progress
via reproducing kernel Hilbert spaces (Fukumizu...Zhang...)
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Improvements

e CPC (conservative PC) by Ramsey, Zhang, Spirtes (1995)
uses weaker form of faithfulness

e FCI (fast causal inference) by Spirtes, Glymour, Scheines
(1993) and Spirtes, Meek, Richardson (1999) infers causal
links in the presence of latent common causes

e for implementations of the algorithms see homepage of the
TETRAD project at Carnegie Mellon University Pittsburgh
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BayeSian approaCh e.g. Cooper, Heckerman, Meek (1997)

idea;:

e The conditionals p(X;|PA;) are free parameters in the

factorization
n

p(X1,.... X,) = ][ p(X;1PAy)
j=1

e define prior over possible DAGs
e define priors on the parameter space of each DAG

e compute posterior probabilities of DAGs

implicit preference of faithful DAGs

Note: whether Markov equivalent DAGs obtain the same
posterior probability depends on the prior
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Large scale evaluation of PC-related approach

Maathuis, Colombo, Kalisch & Biithlmann (2007)

Given

e Observational data: expression profiles of 5,361 genes of yeast (wild
type)

e Interventional data: expression profiles of 5,361 genes for interventions
on 234 genes

Evaluation:

e use observational data to select the genes that are most influenced by the
interventions

(new method: compute lower bound on the effect over all equivalent

DAGs)

e compare with those selected from interventional data

success rates clearly significant: e.g. 33 true positive instead of 5
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data cleaning
), the interven-
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:18,234 %X 5,360  Figure 1 | Predicting causal effects from observational data (data are from ref. 3). (a) The number
Methods). We  of true positives versus the number of false positives are plotted for the indicated methods, for

the top 5,000 predicted effects from the observational data. The target set is the top 10% of the
effects as computed from the interventional data. (b) The partial area under the receiver operating
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ntage of these
as our target set
DA could iden-
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INTERVAL?
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Kernel Independence Testing (Gretton et al., 2007)

k bounded p.d. kernel; P Borel probability measure

Define the kernel mean map

w: P E, plk(zx,.)]

Theorem: If k is universal, i is injective.

Discussion: a measure can be represented as an element of the
RKHS associated with k without loss of information.

Let’s represent p(X,Y) and p(X)p(Y) — they will only map to the
same element if they are equal, i.e., if X 1 Y.
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Kernel Independence Testing: HSIC

Corollary: z I y <= A = ||u(pzy) — p(pz X py)|| = 0.

o For k((z,y), (2", ) = ka(z,2")ky(y, y'):
A? = HS-norm of cross-covariance operator between the two RKHSes
(HSIC, Gretton et al., 2005)

e empirical estimator —5tr[K,K,] (ignoring centering)

e Why does this characterize independence: x I y iff

Sup cov(f(x),g(y)) =0
f,g € RHKS unit balls

(cf. Kernel ICA, Bach & Jordan, 2002)
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Hilbert-Schmidt Normalized Independence Criterion
(Fukumizu et al., 2007)

e normalize out variance of X and Y to get HSNIC; can be shown to equal
the mean squared contingency

/ (pﬁ% - 1) dp(z, y)

independent of the (characteristic/universal) kernel

e can be shown to be upper bounded by the mutual information,

HSNIC(X,Y) < MI(X,Y) = / log (p](?g]’f@)) dp(z,y)
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Approximating the null distribution

e to construct a test, need to compute the null distribution of our test
statistic (HSIC): how is the empirical HSIC distributed if X 1 Y?

e can use a (complicated) asymptotic expression for HSIC (Gretton et al.,
2008), but there’s an easy practical method to generate samples consis-
tent with the null hypothesis (independence), and the original marginals

p(X),p(Y):
e given a permutation o, turn (z1,y1), ..., (Tn, ¥n) i0t0 (1, Yo(1))s - - -+ (Tn, Yo (n))

e the case of conditional independence is harder: given (z1,vy1,21),- -+, (Tn, Yn, 2n),
need to generate samples consistent with X 1L Y |Z, and original p(X|Z),p(Y |Z).

e if 2 only takes few values, can permute within groups having the same
value of z (Fukumizu et al., 2007)

e general case is an open problem, but see e.g. Zhang et al., UAI 2011
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Equivalence of Markov conditions

Theorem: the following are equivalent:

— Existence of a functional causal model

— Local Causal Markov condition: X statistically independent of non-
descendants, given parents

— Global Causal Markov condition: d-separation
— Factorization p(X1,..., X,) =[], p(X; | PAj)

(subject to technical conditions)

\ parents of X
non- descendh
\_/

"\;__/" descendants
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Local Markov = factorization (rauritzen 1996)

e proof by induction. Note the factorization is trivial for n = 1.

e assume that local Markov for n — 1 nodes implies

n—1

(X1, .., Tpo1) = H p(zj|paj) .
j=1

e By local Markov, X,, 1L ND,, |PA,. Assume X, is a terminal node, i.e.,
it has no descendants, then ND,, = {Xy,...,X,,_1}. Thus

X, L {Xq,.... X1} |PA,
and hence the general decomposition
p(xb s 7xn) — p(xn‘xb s 7xn—1)p($17 s 7xn—1>-

becomes
p(xla s 7£Un) — p(xn’pan)p(xla s 7xn—1)-

e By induction,
n

pla1,...,xn) = | | pslpay) .

j =1 Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Factorization = global Markov
(Lauritzen 1996)
Need to prove (X 1L Y |Z)g = (X 1LY |Z),.

Assume (X 1L Y |Z)¢

e define the smallest subgraph G’ containing X,Y, Z
and all their ancestors

e consider moral graph G (undirected graph containing
the edges of G’ and links between all parents)

e use results that relate factorization of probabilities with
separation in undirected graphs
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Global Markov = local Markov

Know that if Z d-separates X,Y, then X I Y |Z.
Need to show that X; 1L ND;|PA;.

Simply need to show that the parents PA; d-separate X; from its non-descendants
NDjI

All paths connecting X; and ND; include a P € PA;, but never as a collider

- — P« Xj
Hence all paths are chains

- — P — Xj
or forks

Therefore, the parents block every path between X; and ND;.
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functional model = local Markov condition

(Pearl 2000) G G'

@\®/@ ~ @/
|

o

® &S

e augmented DAG G’ contains unobserved noise
e local Markov-condition holds for G':

(i): the unexplained noise terms U; are jointly independent, and thus
(unconditionally) independent of their non-descendants

(ii): for the X;, we have
X; L ND’ |PA’

because X; is a (deterministic) function of PA’.

e local Markov in G’ implies global Markov in G’

e global Markov in G’ implies local Markov in G (proof as last slide)
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factorization = functional model

Generate each p(X;|PA;) in

by a deterministic function and a noise variable.

Idea: “encode” X,|pa; (for all values pa;) into the noise U, and pick out
the right one depending on pa;.

formally, U; is a map satisfying

pa; — Xj|pa;

define structural equation
fi(paj, U;) := Uj(pa;) = X;|pa;

special case: if PA; only takes d values, U, is an d-dimensional random
vector, and the structural equation picks out a component of the vector

Note that we could use another joint distribution of the components of Uj,
with the same marginals. The causal graphical model only depends on the

marginals, but the structural equation model contains more information.
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different point of view

@ =g(X), U choosesg € G

e (7 denotes set of deterministic mechanisms

e U randomly chooses a mechanism
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Example: X.,Y binary

U
o

v

= g(X), U chooses g€ {ID,NOT,1,0}
the same p(X,Y’) can be induced by different distributions on G:
e model 1 (no causal link from X to Y)

Plg=0)=1/2, Plg=1)=1/2

e model 2 (random switching between I D and NOT)

Plg=1ID)=1/2, P(g=NOT)=1/2

both induce the uniform distribution for Y, independent of X
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Restricting the Functional Model

e ceneral functional model
X; = f;(Parents;, Noise;)

Note: if Noise; can take IV different values, then it could switch
randomly between mechanisms g} (Parents;), ..., g;' (Parents;)

e additive noise model

X; = f;(Parents;) 4+ Noise;

(Noise; jointly independent)
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Causal Inference with Additive Noise, 2-Variable Case

Forward model: s
yizf(af)—l—n,withxln @<——@

Identifiability: = when 1is there a
backward model of the same form?

! f(x)

Hoyer et al.: Nonlinear causal discovery with additive noise models. NIPS 21, 2009
sPeters et al.: Detecting the Direction of Causal Time Series. ICML 2009
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Identifiability Result (Hoyer, Janzing, Mooij, Peters, Schélkopf, 2008)

Theorem 1 Let the joint probability density of x and y be given by

p(2,y) = puly — f(2))pa(2), (1)

where p,,, p. are positive probability densities on R. If there is a backward model

p(z,y) = palz — 9(y))py (y) , (2)

then, denoting v := logp, and & := logp, and assuming sufficient differentia-
bility, the triple (f,pz, pn) must satisfy the following differential equation for all

z,y with V" (y — f(x))f'(x) # 0:

n gt 1" 1,010 g1 gl 1( £11\2
é-///:é-// <_VV/;f _|_]]L;/) _2]///f//f/_|_V/f///_'_VVV/{j f . V(]]:/) 7 (3)

where we have skipped the arguments y— f(x), x, and x forv, &, and f and their
derivatives, respectively. Moreover, if for a fized pair (f,v) there exists y € R
such that V" (y — f(x))f'(z) # 0 for all but a countable set of points x € R, the
set of all p, for which p has a backward model is contained in a 3-dimensional
affine space.

Corollary 1 Assume that v = & = 0 everywhere. If a backward model
exists, then f is linear.
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|dea of the proof

If p(x,y) admits an additive noise model
Y = f(X)+E

we have
p(x,y) = q(x)r(y — f(x)).

It then satisfies the differential equation

8 ( 8°logp(x,y)/0x
=0.
Ox \ 0% log p(x,y)/0x0y

If it also holds with exchanging x and y, only specific cases remain.

Dominik Janzing & Bernhard Scholkopf, June 26, 2012



Causal Inference Method

Prefer the causal direction that can better be fit
with an additive noise model.

Implementation:
e Compute a function f as non-linear regression of X on Y

e Compute the residual
E:=Y — f(X)

e check whether E and X are statistically independent (un-
correlated is not enough)
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Experiments

Relation between altitude (cause) and average temperature (effect)
of places in Germany

15 -

temperature

0 1000 2000 3000
altitude
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- 4007 -
T & 5
= B ~ 200 3,
gt I O . ?‘t“,
» > 7% L g
g . ‘: g S n‘{
= ; :‘: i \;\
2 g -200
1000 2000 3000 —4(-)-(% 0 0 10 20
altitude temperature

Our independence tests detect strong dependence.
Hence the method prefers the correct direction

altitude — temperature
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e Generalization to post-nonlinear additive noise models: Zhang
& Hyvarinen: On the Identifiability of the Post-Nonlinear Causal
Model, UAI 2009

e Generalization to graphs with more than two vertices:
Peters, Mooij, Janzing, Scholkopt: Identifiability of Causal Graphs
using Functional Models, UAI 2011

e Generalization to two-vertex-graphs with loops:
Mooij, Janzing, Heskes, Scholkopf: Causal discovery with Cyclic
additive noise models, NIPS 2011
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Independence-based Regression (Mooij et al., 2009)

e Problem: many regression methods assume a particular noise
distribution; if this is incorrect, the residuals may become de-
pendent

e Solution: minimize dependence of residuals rather than maxi-
mizing likelihood of data in regression objective

e Use HSIC as a dependence measure

Mootj, Janzing, Peters, Scholkopf: Regression by dependence minimization and its application
to causal inference. IC'ML 2009.

Yamada & Sugiyama: Dependence Minimizing Regression with Model Selection for Non-
Linear Causal Inference under Non-Gaussian Noise. AAATI 2010.
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Detection of Confounders
Given p ( X,Y ), infer whether

» X - Y 0
> Y =X ®—® ®/Z\® ®—® @ e

» X+ T —Y for some (possibly) unobserved variable
T

-

e Confounded additive noise (CAN) models !
X = fx (T) + Ux
Y = fy (T) + Uy

with functions fx, fy and Ux,Uy,T jointly independent

Note: includes the case -
Y = f(X)+U -
by setting fx =1td and Ux = 0.
e Estimate (fx (1), fy (T)) using dimensionality reduction

o If Ux or Uy is close to zero, output 'no confounder’
e Identifiability result for small noise

Janzing, Peters, Mooij, Scholkopf: Identifying latent confounders using additive noise models.

=\ UAT 2009
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However, employing properties of the noise is not the only way of inferring cause
and effect.

What about the noiseless case?
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Inferring deterministic causal relations

e Idea: If X — Y then f and the density px are chosen “inde-
pendently” by nature

e Hence, peaks of the density px do not correlate with the slope
of f.
e Then, peaks of py necessarily correlate with the slope of 1.

A

y
p(y) f (x)

X

.
>

/0 N\

Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Schélkopf: Inferring deterministic causal relations, UA 2010
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Causal independence implies anticausal dependence

Assume that f is a monotonously increasing bijection of [0, 1].
View p, and log f’ as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):
Cov (log f',pz) =0
Note: this is equivalent to
1 1
| os @playdz = [ 1og (@)
0 0

since

Cov (log f',ps) = E[log f"ps]—E[log f'] E[p,] = E[log f"-pz]—E[log f'].

Proposition: /
Cov (log f =" ,py) >0

'..‘ﬂ J Wlth equa’llty 1ﬂ. f — Id‘ Dominik Janzing & Bernhard Schélkopf, June 26, 2012



U, U, uniform densities for z,y

vy, v, densities for x,y induced by transforming wu,, u, via f ! and f

Equivalent formulations of the postulate:

Additivity of Entropy:
S (py) =S (pz) =S (vy) — S (uz)

Orthogonality (information geometric):
D (pz || ve) = D (pa | uz) + D (ug || vz)

which can be rewritten as
D (py I uy) =D (ps ||ug) +D (Uy | uy)

Interpretation:

irregularity of p, = irregularity of p, + irregularity introduced by f
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Slope-Based Estimator

Slope-based IGCI: infer X — Y whenever
1 1
Jy loglf” @) [P dx < [ loglg’ ()| P (v) dx
We introduce the following estimator:

Yiv1 Vi
Xi+1—X;

Croy = [log |/ (¥) | P(x) dx ~ —L- g

where the x; values are ordered.

» infer X — Y whenever

Cxoy < Cyox.
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80 Cause-Effect Pairs
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80 Cause-Effect Pairs — Examples

pair0001
pair0005
pair0012
pair0025
pair0033
pair0040
pair0042
pair0047
pair0064
pair0068
pair0069
pair0070
pair0072
pair0074
pair0078

var 1

Altitude
Age (Rings)
Age

cement

daily alcohol consumption

Age
day
#cars/24h

drinking water access

bytes sent

inside room temperature

parameter
sunspot area
GNI per capita

PPFD (Photosynth. Photon Flux)

var 2

Temperature

Length

Wage per hour

compressive strength

mcv mean corpuscular volume
diastolic blood pressure
temperature

specific days

infant mortality rate

open http connections
outside temperature

sex

global mean temperature

life expectancy at birth

NEP (Net Ecosystem Productivity)

dataset ground truth

DWD
Abalone
census income
concrete data
liver disorders
pima indian
B. Janzing
traffic
UNdata

P. Daniusis

J. M. Mooij
Biilthoff
sunspot data
UNdata
Moffat A. M.

L I I A I A A A A A

http://webdav.tuebingen.mpg.de/cause-effect/
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100

IGCI:
Deterministic
90 Significant Method
80 LINGAM:
Shimizu et al.,
2006
70
AN:
50 Additive Noise
g Model (nonlinear)
g 50 PNL:
g AN with post-
< 40 nonlinearity
GPI:
30 Mooij et al.,
2010
= IGCI: slope, uniform
20 = LINGAM
= AN
10 " PNL
—GP
0 1 1 1 1 I I | | J
0 10 20 30 40 50 60 70 80 90 100

Decision rate (%)
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Causal Learning and Anticausal Learning

e example 1: predict gene from mRNA sequence

O Growing peptide chain
Q@
< )/\ @ /\

\ “ \ Incoming tRNA
\r‘g\*\P‘\-. \_on, bound to Amino Acid
\ Nl
Outgoing \ \ \ \
empty tRNA \P~ o.C\ \ \ >
N \ G,
N\ PR
! w
d
" UGG AAAGAUUUC
X Y

MessengerRNA
Ribosome

Peptide Synthesis
Source: http://commons.wikimedia.org/wiki/File:Peptide syn.png

e example 2: predict class membership from handwritten digit

% ¢ %
0 id
NX NY
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Covariate Shift and Semi-Supervised Learning

Assumption: p(cause) and mechanism p(effect|cause) are indepen-
dently chosen by nature;

Goal: learn X — Y, i.e., estimate (properties of) p(Y|X)

e covariate shift (i.e., p(X) changes): mechanism
p(Y|X) is unaffected by assumption

. . . . . . X -
e semi-supervised learning: impossible, since 0
p(X) contains no information about p(Y|X) id
N, N,

o transfer learning (Nx, Ny change, ¢ not):
could be done by additive noise model with

conditionally independent noise causal mechanism

e covariate shift (i.e., p(X) changes): need to de-

cide if change is due to mechanism p(X|Y) or
cause distribution p(Y') (nontrivial) =
@
e semi-supervised learning: possible, since p(X) id
contains information about p(Y|X) — e.g.,
: N N
cluster assumption. X Y

“\W‘“ V (StOl"key, 2009, SChOZkOpfet al.’ ICML 20]2) Dominik Janzing & Bernhard Schélkopf, June 26, 2012



High-dimensional variables

Let X and Y be m and m dimensional variables (possibly Gaussian), infer
whether the causal model reads:

Y =AX+U or X=AY +U

Idea:
e P(X) described by covariance matrix > x
e P(Y|X) described by structure matrix A
e hence X x and A are “independent” if X — Y

e therefore the trace formula holds:

1 1 1
(A v AT ~ Ztr(D v ) =tr(AAT
ntr( xA") ntr( X)ntr( )

o uses itr(CD) ~ 1tr(C)itr(D), for two d-dimensional matrices whose
entries are drawn independently
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Deterministic case

Y =AX o X=Aly

Theorem (Janzing, Hoyer, Scholkopf 2010): if trace formula

ltr(AZXAT) = ltr(EX)ltr(AAT)
n

n n

for X — Y holds exactly, then it is violated for ¥ — X:

LAy AT < Ler(my ) Ser(A-1A-T)
n T n

Inference rule: Prefer the direction for which violation of trace formula is
smaller (works also for the nondeterministic case)
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Causal Inference for Individual Objects @anzing & Schiikopf, 2010)

Similarities between single objects also indicate causal relations:

Ravees

SPORT S |

Halbbitter
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Causal Markov Conditions

e Recall the (Local) Causal Markov condition:
An observable is statistically independent of its non-descendants, given
parents

e Reformulation:
Given all direct causes of an observable, its non-effects provide no addi-
tional statistical information on it
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Causal Markov Conditions

e (Generalization:
Given all direct causes of an observable, its non-effects provide no addi-
tional staetsstieat information on it

e Algorithmic Causal Markov Condition:
Given all direct causes of an object, its non-effects provide no additional
algorithmic information on it
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Kolmogorov complexity
(Kolmogorov 1965, Chaitin 1966, Solmonoff 1964)

of a binary string x

e K(x) := length of the shortest program with output x (on a
Turing machine)

e interpretation: number of bits required to describe the rule that
generates x

7

e cquality "=" 1s always understood up to string-independent
additive constants

e K (x) is uncomputable

probability-free definition of information content
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Conditional Kolmogorov complexity

e K(y|x): length of the shortest program that generates y
from the shortest description of the input x.

e number of bits required for describing y if the shortest descrip-
tion of x is given

e note: x can be generated from its shortest description but not
vice versa because there is no algorithmic way to
find the shortest compression
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Algorithmic mutual information (Chaitin, Gacs)

Information of z about y

e [(x:y) = K(z)+ K(y) — K(z,y)
= K(z)-K(z|y) =K(y) — K(y|x)

e Interpretation: number of bits saved when compressing z,y
jointly rather than independently

e Algorithmic independence x Il y: <= I(z:y)=0
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Conditional algorithmic mutual information

Information that x has on y (and vice versa) when z is given

o [(z:ylz):=K(z|z)+K(y|z) — K(z,y]z)
e Analogy to statistical mutual information:

[(X:Y|2)=S(X|2)+S5(Y|2)-S(X,Y|Z)

e Conditional algor. independence z Il y|z <= [ (x:y|z) =0
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Algorithmic mutual information: example
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Postulate: Local Algorithmic Markov Condition

Let x1,...,x, be observations (formalized as strings). Given its di-
rect causes pa;, every x; is conditionally algorithmically independent
of its non-eftects nd,

z; A nd;|pa;
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Equivalence of Algorithmic Markov Conditions

For n strings x4, ..., z, the following conditions are equivalent

e [Local Markov condition
I(z; : ndj|pa;) =0

e (Global Markov condition:
If R d-separates S and T then I (S:T|R)=0

e Recursion formula for joint complexity

K(Qfl,...,xn) — ZK(QZ'] ‘paj)
j=1

Janzing € Scholkopf, IEEE Trans. Information Theory, 2010
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Algorithmic model of causality

e for every node x, there exists a program u; that computes z;
from its parents pa; pa.
J

Va
-

e all u; are jointly independent \)EV =uj(paj )

e the program u; represents the causal mechanism that generates
the effect from its causes

e u; are the analog of the unobserved noise terms in the statistical
functional model

Theorem: this model implies the algorithmic Markov condition

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




“Independent” = algorithmically independent?

Postulate (Janzing & Scholkopf, 2010, inspired by Lemeire & Dirkx, 2006):
The causal conditionals p(X;|PA,) are algorithmically independent

e special case: p(X) and p(Y|X) are alg. independent for X — Y

e can be used as justification for novel inference rules (e.g., for additive noise
models: Steudel & Janzing 2010)

e excludes many, but not all violations of faithfulness (Lemeire & Janzing,
2012)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Generalized independences Steudel, Janzing, Schélkopf (2010)

Given n objects O := {x1,...,T,}

Observation: if a function R : 2° — R(}L is submodular, i.e.,
R(S)+ R(T) > R(SUT)+ R(SNT) vS, T C O
then
I(A;B|C) =R(AUC)+ R(BUC)— R(AUBUC)—-R(C) >0

for all disjoint sets A, B,C C O

Interpretation: [ measures conditional dependence
(replace R with Shannon entropy to obtain usual mutual information)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Generalized Markov condition

Theorem: the following conditions are equivalent for a DAG G

e local Markov condition
z; 1L nd; |pa;

e global Markov condition: d-separation implies independence

e sum rule
n

R(x1,...,2,) = Y _ R(zj|pay)

g=1

—but can we postulate that the conditions hold w.r.t. to the true DAG?

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Generalized functional model

Theorem:
e assume there are unobserved objects uy,...,uy Pa J
U.
e assume

R(z;,paj,u;) = R(paj,u;)

(x; contains only information that is already contained in its parents +
noise object)

then x1,...,x, satisfy the Markov conditions

= causal Markov condition is justified provided that mechanisms fit to infor-
mation measure

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Generalized PC

PC algorithm also works with generalized conditional independence

Examples:
1. R := number of different words in a text
2. R := compression length (e.g. Lempel Ziv is approximately submodular)
3. R := logarithm of period length of a periodic function

example 2 yielded reasonable results on simple real texts (different versions of
a paper abstract)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Summary

e conventional causal inference algorithms use conditional statistical depen-
dences

e more recent approaches also use other properties of the joint distribution

e non-statistical dependences also tell us something about causal directions

Dominik Janzing & Bernhard Schélkopf, June 26, 2012




Selection within Markov equivalence classes

different approaches

e some “independence” condition between p(X;|PA;)

Information-geometric method, Trace Method

e restricting conditionals/functional models to subsets

Additive-noise models, post-nonlinear model

e define priors on p(X;|PA;) that can yield different posteriors for equiva-
lent DAGs

Gaussian process based prior by Mooij, Stegle, Janzing, Scholkopf (2010)

Dominik Janzing & Bernhard Schélkopf, June 26, 2012



Thank you for your attention
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