
A Nearest Neighbor Data Structure for Graphics Hardware

Lawrence Cayton
Max Planck Institute for Biological Cybernetics

lcayton@tuebingen.mpg.de

ABSTRACT
Nearest neighbor search is a core computational task in
database systems and throughout data analysis. It is also
a major computational bottleneck, and hence an enormous
body of research has been devoted to data structures and
algorithms for accelerating the task. Recent advances in
graphics hardware provide tantalizing speedups on a variety
of tasks and suggest an alternate approach to the problem:
simply run brute force search on a massively parallel sys-
tem. In this paper we marry the approaches with a novel
data structure that can effectively make use of parallel sys-
tems such as graphics cards. The architectural complexities
of graphics hardware—the high degree of parallelism, the
small amount of memory relative to instruction throughput,
and the single instruction, multiple data design—present sig-
nificant challenges for data structure design. Furthermore,
the brute force approach applies perfectly to graphics hard-
ware, leading one to question whether an intelligent algo-
rithm or data structure can even hope to outperform this
basic approach. Despite these challenges and misgivings,
we demonstrate that our data structure—termed a Random
Ball Cover—provides significant speedups over the GPU-
based brute force approach.

1. INTRODUCTION
In this paper, we are interested in the core nearest neigh-

bor (NN) search problem: given a database of points X, and
query q, return the closest point to q in X, where closest is
usually determined by some metric. This basic problem and
its many variants are major computational challenges at the
heart of database systems and across data analysis. The
simplest approach is brute force search: simply compare q
to each element of the database; but this method is too slow
in many applications. Because of the ubiquity of the NN
problem, a huge variety of data structures and algorithms
have been developed to accelerate search.

Though much of the work on the NN problem is some-
what independent of the computer hardware on which it
is run, recent advances and trends in the hardware sector
forces one to reconsider the basics of algorithm and data
structure design. In particular, CPUs are almost all mul-
ticore at present, and hardware manufacturers are rapidly
increasing the number of cores per chip (see, e.g., [17] for dis-
cussion). Additionally, the tremendous power of massively
parallel graphics processing units (GPUs) is being unleashed
for general purpose computation. Given that much of the
computational muscle appears to be increasingly parallel in
nature, it is interesting to consider how database systems

and data analysis algorithms will evolve.
GPUs provide a natural object of study for NN data struc-

tures operating in a massively parallel computational envi-
ronment: they are readily available and exhibit a substan-
tially higher degree of parallelism than CPUs at present.
Moreover, they offer a tremendous amount of arithmetic
power, but communication and memory access are often
performance-limiting factors. Thus even though it is impos-
sible to predict how computer hardware will evolve, it seems
likely that least some of the techniques that are effective on
GPUs will be effective more broadly.

There is a second, more practical reason for studying NN
search on the GPU: GPUs provide outstanding performance
on many numerical tasks, including brute force NN search.
Indeed, a GPU implementation of brute force search is often
competitive with state-of-the-art data structures that are
designed for a single core, as we discuss in the next section.
This leads to the natural question: is it possible to design
a data structure that improves NN performance over brute
force on a GPU much as traditional data structures have
improved performance over brute force on a CPU?

We introduce the Random Ball Cover (RBC) data struc-
ture in this study and show that it provides a substantial
speedup over GPU-based brute force. The data structure
(along with this study) serves the two motivations discussed
above. In keeping with the first—GPUs provide a concrete
example of a highly parallel system—we design search and
build algorithms using only a few very simple operations
that are naturally parallel and require little coordination be-
tween nodes. The second motivation is to make use of the
power of a GPU with a practical algorithm and data struc-
ture for NN search on the GPU; our experiments demon-
strate that our algorithm is effective, and we provide ac-
companying source code.

1.1 Scope
We are actively developing the RBC data structure. In

this work, we focus mainly on issues directly related to
GPUs. In upcoming work, we develop the mathematical
properties of the data structure; in particular, the RBC can
be considered a relative of the data structures developed in
[9] and later extended in [11, 2]; see also [5]. Its performance
and parameters are related to a notion of intrinsic dimen-
sionality developed in this line of work. To keep focus, we
motivate our data structure only heuristically in the present
paper, and delay detailed exploration of the parameters. We
are also investigating a variety of extensions and alternative
uses of the RBC, but focus only on the most basic instanti-
ation of the nearest neighbor search problem here.



Data CPU (sec) GPU (sec) Speedup
Bio 926.78 9.98 93

Physics 486.68 4.99 97

Table 1: Comparison of brute force search on the
GPU and one core of the CPU.

2. MOTIVATION AND CHALLENGES
Recall that the motivation for this study is two-fold: we

hope to develop practical techniques for the NN problem
that can exploit the power of GPUs and simultaneously use
the GPU as a vehicle for studying the NN problem on a
massively parallel system. In this section, we expand on
this motivation by briefly comparing brute force search on
the GPU to state-of-the-art data structure results. We then
discuss the challenges of data structure design for GPUs.

A recent study suggested performing NN search on the
GPU using the basic brute force technique [7]. As this paper
demonstrated, brute force search on the GPU is much faster
than it is on the CPU, and even compares favorably to an
excellent CPU implementation of a kd-tree. Here we wish
to provide a bit more support to these results; in particular,
we ran GPU-based brute force on benchmarked data sets
so that we can compare the performance to state-of-the-
art in (in-memory) NN data structures. We implemented
the brute force method and ran it on two standard data
sets from the machine learning literature (we describe the
data in more detail in the section 6 with the rest of the
experiments). Table 1 shows the results.

The exact numbers are not so important; we are com-
paring results from two different pieces of hardware, and
so the numbers can be skewed by using a slower CPU or
faster GPU, for example.1 However, the magnitude of these
numbers is important: the GPU implementation is nearly
two orders of magnitude faster than the single core CPU
implementation.

These same data sets were used as benchmarks in two
recent papers on NN data structures, which are at present
state of the art [2, 18]. The data structures described in
these papers are not designed for parallel systems. They
provide a speedup (over CPU-based brute force search) of
roughly 5-20x for the Bio data set and 30-100x for the Physics
data set.2 The results shown in table 1 are certainly com-
petitive.

As we have just seen, the speedup of NN search due to par-
allel hardware over non-parallel hardware is already roughly
similar to the speedup of NN search due to intelligent data
structures. Hence we conclude that GPUs are promising
devices for NN search and, more broadly, that to remain
effective, data structures likely will need to adapt to paral-
lel hardware. Of course, these experiments (and the ones in
[7]) are limited, and the data structure approaches would be
more effective relative to brute force in very low dimensions.

Nevertheless, we are led naturally to the questions: Can
these (or similar) data structures be operated on GPUs and
can they beat the performance of a brute force search? At
least at first glance, these data structures seem like a poor

1Details of our hardware can be found in the experiments
section.
2We did not personally test these algorithms; we are only
reading these numbers from the cited works.

fit for the GPU architecture: the data structures in the two
cited papers [2, 18] are advanced forms of metric trees, with
search algorithms that guide queries through a deep tree in a
highly data-dependent and complex way. This type of search
is challenging to implement on any parallel architecture be-
cause the complex interaction with the queries seems to re-
quire a high-degree of coordination between nodes. The sin-
gle instruction, multiple data (SIMD) format of GPU mul-
tiprocessors seems to exacerbate this difficulty since thread
processors must operate in lock-step to prevent serialization.

Furthermore, attaining anywhere close to peak perfor-
mance on a GPU is quite difficult. One procedure that
is able to utilize the GPU effectively is a dense matrix-
matrix multiply; see [22] for an excellent, detailed study on
this problem. Brute force search is quite closely related to
matrix-matrix multiply: the database can be represented as
a large matrix with one database element per row, and (at
least in the case of multiple simultaneous query processing)
the set of queries can be represented as the columns of a
second matrix. All rows of the database matrix are com-
pared against all columns of the query matrix, much as two
matrices are multiplied. Thus, at least with a proper imple-
mentation, the brute force approach can make near full use
of the GPU, which is quite rare for any algorithm.

Because of the near perfect matching of GPU architec-
ture and brute force search on one hand, and the apparent
difficulties of using space decomposition trees on the other,
we take a different approach to NN search in this work. We
develop an extremely simple data structure that is designed
from the principles of parallel algorithms, rather than try
to fit a sequential algorithm onto a parallel architecture. In
particular, our search algorithm consists of two brute force
searches, and the build algorithm consists of a series of nat-
urally parallel operations. In this way our search algorithm
performs a reduced amount of work for NN search, but can
still utilize the device effectively.

3. RELATED WORK
Before proceeding to describe our data structure, we pause

to review some relevant background.
The body of work on the nearest neighbor search problem

is absolutely massive, so we mention only a couple of the
most relevant papers. The most relevant research to the
present work is on main-memory data structures for metric
space searching. In particular, the basic ideas behind metric
trees [16, 21] were influential, as was the more recent work
on NN search in intrinsically low-dimensional spaces cited
in the introduction. The approach of [3] also shares some
similarity with our work.

We allow the NN problem to be relaxed slightly, as has
become common in recent work on NN search. In particular,
the NN search problem is quite difficult in even moderate-
dimensional spaces, and allowing an approximate NN makes
the problem somewhat easier. There are multiple ways to
define approximate. Typically, a database element is con-
sidered an approximate NN for a query if it is not too much
further away from the query than the true nearest neigh-
bor, or alternatively if it is among the top, say, k nearest
neighbors. This slackening is often reasonable in applica-
tions, and appears necessary except in low dimensions; see
e.g. [1, 8, 14, 18] for background. We adopt this philosophy
in the present work; in particular, we experiment with fairly
high-dimensional data sets and allow the search algorithm



to return a point that is not the exact NN.
We previously discussed some of the difficulties associated

with hierarchical space decomposition trees on GPUs. How-
ever, spatial decompositions are a crucial aspect of many
graphics methods, such as ray-tracing, and hence there is
work is on kd-trees and bounding volume hierarchies specific
to GPUs. Work on the kd-tree includes [6, 23] and on bound-
ing volume hierarchies includes [12, 13]. We note that this
line of work, though quite impressive, does not necessarily
contradict what we said earlier about the difficulties of im-
plementing tree-based space decompositions on the GPU. In
particular, the work on the kd-trees has only fairly recently
become competitive with multicore CPU-based approaches
[23], whereas GPU-based brute force NN search easily out-
paces the analogous CPU algorithm.

Finally, [23] even discuss the problem of nearest neighbor
search, though they compare only to CPU based algorithms
and not to brute force search on the GPU. Even so, it will
be interesting to compare performance results of different
approaches as more ideas are developed and more software
becomes available.

4. RANDOM BALL COVER
We describe the basics of the RBC data structure and

search algorithm in this section. The next section details
the construction algorithm for GPUs. Again, we will only
give an intuitive justification for this data structure here;
mathematical details will be provided in future work.

In a previous section, we discussed the difficulties of realiz-
ing the performance capabilities of the GPU, and discussed
why brute force search was so effective. The RBC search al-
gorithm follows naturally from these design considerations.
In particular, it consists only of two brute force type oper-
ations, and each operation looks at only a small fraction of
the database. In this way, the search algorithm is able to
reduce the amount of work required for NN search, but still
effectively utilize the device.

Let us set notation. Throughout, we assume that the
database is a cloud of n points in Rd, and that the distance
measure is metric. X ⊂ Rd refers to the database of points.
We will be considering a set of m queries Q ⊂ Rd, which are
the points whose nearest neighbors are desired. Though our
data structure can handle any metric, the focus of this work
is on `p-norm based distances, where p ≥ 1; i.e.

d(x, y) = ‖x− y‖p =
“X

(xi − yi)
p
”1/p

.

More complex metrics are theoretically possible, though may
be difficult to implement on a GPU.

The RBC is a very simple randomized data structure that
can be visualized as a horizontal slice of a metric tree with
overlapping nodes. The data structure consists of nr rep-
resentative points R ⊂ X which are chosen uniformly at
random, each of which points to a subset of the remainder
of X. In particular, for each r ∈ R, the data structure main-
tains a list Lr which contains the s-nearest neighbors of r
among X. These lists can and should overlap. See figure 1
for an example.

Searching the RBC for a query q’s nearest neighbor is
quite simple. First, the search algorithm computes the near-
est neighbor of q within the representative set R using brute
force search; suppose it is r∗. Next, the algorithm com-
putes the NN of q within the points owned by r∗—i.e. the

Figure 1: An example RBC. The black circles are
database points, the red (open) circles are the repre-
sentatives, and the blue balls cover the points falling
into the nearest-neighbor list Lr for each represen-
tative.

points contained within the list Lr∗—again using brute force
search. The nearest neighbor within Lr∗ is returned.

This algorithm builds off of the intuition that two nearby
points are likely to have the same representative, which can
be justified with the triangle inequality. It is possible that
the algorithm will return an incorrect answer, but the prob-
ability of this event can be reduced by increasing the sizes
of lists each representative points to and thereby increasing
the overlap between lists, or by increasing the number of
representatives.

Let us consider the work complexity of search. Brute force
search for m queries among n elements in Rd takes work
O(mnd); moreover this operation parallelizes nearly linearly
assuming m · n is larger than the number of processors.3

Thus if there are nr representatives, each of which owns s
database elements, the work required for search using a RBC
is O(mnrd + msd), and this work is simple to distribute.
Clearly, the choice of nr and s dictates the time complexity.

The choice of these two parameters also affects the prob-
ability of success. The product of these two values nr · s
should be greater than the size of the database n; if it is
much smaller, there will be many database points which are
not covered at all. On the other hand, since the algorithm
only searches for NN among points within a single represen-
tative’s list, increasing the overlap between lists will boost
the probability of success. This idea is similar in spirit to
the kd-trees with overlapping cells of [14].

The asymptotic time complexity is a function of the greater
of nr and s; hence from the perspective of time complexity,
we may as well set them equal. To ensure a reasonably low
probability of failure, nr · s should be greater than n. The
following choices satisfy these criteria:

nr = s = O(
√
n logn). (1)

These choices of nr and s yield a per-query work amount of
only O(d

√
n logn), which is a dramatic improvement over

the O(dn) work required of the brute force algorithm. This
is a massive speedup for even moderate values of n.

3On a GPU, one typically needs to create many more (soft-
ware) threads than the number of thread processors so that
the scheduler can hide certain latencies. Even so, the num-
ber of threads needed to keep the processor busy is typically
a very small fraction of the work to be done for NN prob-
lems.



Intuitively, the logarithmic terms provide the necessary
overlap between lists so that the probability of failure is
small. Furthermore, as long as

√
n logn is larger than the

number of processors, the algorithm will still make full use
of the GPU (but see the previous comment). We show in the
experiments that a simple setting of the parameters yields
both a significant speedup and a very low error rate.

One might view the RBC as a tree-based space decom-
position data structure that has only one level. The space
decomposition trees used on CPUs typically have a depth
of logn, and so it is rather surprising that such a stump
can be effective for the NN task. One could of course con-
sider a tree of depth somewhere in between 1 and logn, and
that might yield stronger results. On the other hand, as the
depth is increased, the search algorithm becomes more and
more difficult to parallelize and implement efficiently on a
GPU. Regardless, we show in the experiments that this very
simple structure offers more than a magnitude speedup over
the (already very fast) standard brute force search algorithm
on fairly challenging data sets.

5. CONSTRUCTION OF THE RBC
The algorithm for constructing an RBC is simple to state:

assign each database point x ∈ X to the r ∈ R such that x is
one of the k-nearest neighbors of r. Making this algorithm
practical on a GPU requires some care, especially on large-
scale data sets. We show in this section that the construction
can be performed using a few naturally parallel operations.

For each r ∈ R, we wish to construct a list Lr of the
id numbers of r’s s-nearest neighbors. A straight-forward
method for doing this is to use the brute force technique
to do NN search between R and X, which we now detail.
First, we compute all pairs of distances between X and R;
if the resulting distance matrix is too big to fit in device
memory, we process only a portion of R at a time.4 The
distances are stored in matrix D, where the rows index R
and the columns index X. Next, we perform a partial sort
(or selection) of each row of the distance matrix to find the
s-smallest elements. Doing so requires maintaining an index
matrix J of the same size as D. At the end of the sorting,
the first s elements of row i of J are stored in Lri in the
device memory.

Unfortunately, the approach just detailed is not partic-
ularly efficient. The problem is that the standard pivot-
based selection and sort algorithms that are quite effective
on the CPU are rather poorly suited for a GPU, requir-
ing many irregular memory accesses. Thus one might re-
sort to a partial selection sort algorithm as done in [7]. For
very small s, selection sort is quite effective (and simple to
implement effectively on a GPU), however in our problem
s = O(

√
n logn) and hence is too large for a work-inefficient

sorting algorithm. For example, in the experiments we detail
later, s is in the thousands. We found that the cost of the
sorts dominated the cost of computing the distances even at
much smaller values of s. These findings are not surprising,
given that sorting on GPUs is still very much an area of
active research, and that even the best GPU algorithms are
not dramatically faster than their CPU counterparts [19].
In contrast, the distance computation step is dramatically
faster on the GPU as it is a basic matrix-matrix operation.

4If the database X does not fit into device memory, then it
must be processed in smaller portions at a time.

To avoid these inefficiencies, we develop an alternative
build algorithm. First we need a couple of definitions that
are standard in the NN search literature. The range search
problem is the sibling of NN search; instead of returning the
closest point to a query, all points within a specified distance
from the query are returned. The range count problem is
the same as range search, but only the count of the number
of points in range is returned. Both of these problems can
clearly be solved with brute force search: compute all dis-
tances and return points—or the count of points—in range.

Our alternative build algorithm, like the simple one al-
ready described, first computes the matrix of distances be-
tween R and X. Instead of sorting the rows (recall there
is one row per representative), it then performs a series of
range counts to find a range γ such that approximately s
points fall within distance γ of r for each r ∈ R. It then
performs a γ-range search in which the ids of the (approxi-
mately) s closest points are returned.

We now go into the details of this algorithm. Each row of
the distance matrix can be examined independently of the
other rows, providing a natural granularity to parallelize
at. Furthermore, each row is assigned a group of t threads
(t = 16 in the current implementation), which examine dif-
ferent portions of the row. First, the algorithm finds the
minimum and maximum values in each row. This is done
in the obvious way; namely, each thread scans 1/16th of
the row to find the min and max in that portion, then each
thread writes its min and max to shared memory, and then
the values are compared and written using the standard par-
allel reduction paradigm.

With the mins and maxes calculated, the algorithm now
has a starting guess for a range γi (where i refers to the
row) such that the number of points falling within distance
γi of reference point ri is s. The algorithm starts with the
average of the min and the max in γi, and performs a range
count. The division of labor into threads is the same as be-
fore: there are t threads assigned per row, and the rows can
be processed independently.5 Once the count is computed,
the ranges γi are adjusted, and another range count is exe-
cuted. This process repeats until the range counts are close
enough to s, at which point the counts are stored into the
main memory of the GPU. Note that since multiple rows
are grouped onto the same multiprocessor, this procedure
appears to be performing a data-dependent recursion, which
is inefficient in the SIMD architecture of GPUs. However,
the only place of divergence between threads (in different
rows) is in choosing whether to increment or decrement γi,
as long as there is agreement on how many iterations to run
for. Thus this algorithm makes only minor divergences be-
tween threads and hence is effective within the constraints
of the SIMD architecture.

The algorithm next takes the γis from the previous step
and performs a range search on this value of γi. For each
element of the distance matrix, the algorithm compares the
distance to the appropriate γi and sets a binary variable (in
the main GPU memory) as appropriate. This step is trivial
to parallelize.

Finally, the algorithm takes the binary matrix computed
in the previous step and uses it to compute the ids of the
database points to be stored in each Li. It does this by
performing a parallel compaction on the lists Li using the

5However, we found it more efficient to group several rows
together into a common CUDA thread block.



Data DB Size Dimension # queries nr

Bio 200k 74 50k 1456
Physics 100k 78 50k 1024
Robot 1M 21 1M 3248

Table 2: Data specifications.

parallel prefix sum paradigm, which has been detailed specif-
ically for GPUs in [20].

Though this build routine is a bit complicated, we found
that it was significantly more efficient than the simple sort-
based algorithm discussed at the beginning of this section.
We attribute this efficiency to the minimal and regular in-
teraction with main memory: each step of the range count
reads the distance matrix once, as do the rest of stages of
the algorithm, and the reads are simple to coalesce. Fur-
thermore, there are few memory writes: the γi are written
in one step, the binary matrix in the next, and finally the
lists Li. These writes follow a very regular pattern, and
so are also simple to coalesce. In contrast, a work-efficient
sorting algorithm would likely need to perform many more
writes.

We note that each step of the build algorithm parallelizes
and can executed efficiently on graphics hardware. The
total amount of work done is reasonably small. Comput-
ing the distance matrix requires O(n · nrd) work, where
nr = O(

√
n logn) is the number of representatives; and lo-

cating the correct range requires O(n · nr log ∆) work. Here
∆ is the spread of the metric space, defined as the ratio of
the maximum distance between points in the database to
the minimum distance between points in the database.

6. EXPERIMENTS
In this section, we measure the performance of the RBC

data structure on several data sets. Our implementation is
in CUDA and C, and is available from the author’s web-
site. All experiments were conducted on a NVIDIA C2050
with three gigabytes of memory, running on a 2.4Ghz Intel
Xeon.6 All of the real-valued variables were stored in single
precision format, which is appropriate for the data we are
experimenting with.

We used three data sets for experimentation; see table 2
for the basic specifications. The Bio and Physics data sets
are taken from the KDD-Cup 2004 competition; see [10]
for more details. These data sets have been experimented
with extensively in the machine learning literature, and have
been previously benchmarked for nearest neighbor search in
[2, 4, 18]. The Robot data set is an inverse dynamics data
set generated from a Barrett WAM robotic arm with seven
degrees of freedom; see [15] for more information. We used
the `1-norm to measure distance. We note that the data
we use is all of moderately high dimensionality and hence is
challenging for space-decomposition techniques.

It is non-trivial to implement algorithms on the GPU in
an efficient way; slight changes in code can often lead to mas-
sive differences in performance. Because of this sensitivity
to implementation details, benchmarking an algorithm—as
opposed to an implementation—is tricky. Here we measure
the performance of our search algorithm relative to brute

6We also experimented with a NVIDIA GTX285 and found
similar speedups.

Data Brute (sec) RBC (sec) Speedup Avg rank
Bio 9.97 .20 49 .74

Physics 4.99 .14 35 1.34
Robot 408.23 3.35 122 .71

Table 3: Comparison of search time for RBC and
brute force. The times stated are the times needed
compute the nearest neighbors for all of the queries
(e.g. 100k for the Bio data set).

force search on the GPU. At the core of the RBC search
algorithm is a brute force search, albeit on subsets of the
database, not the whole thing. To normalize for implemen-
tation issues, we use virtually identical brute force imple-
mentations for the RBC search and for the (full) brute force
search.7 Additionally, as a sanity check, we compared the
performance of our brute force implementation to one that
was previously published by Garcia et al. in [7]. We found
our implementation to be slightly faster than Garcia’s man-
ual and CUBLAS-based implementations. We concluded
that our implementation is reasonable for benchmarking the
RBC search algorithm.

Since our algorithm is not guaranteed to return the exact
nearest neighbor, we need to measure the error. To do so
we compute the rank of the returned point—i.e. how many
points in the database are closer to the query than the re-
turned point. A rank of 0 corresponds to the (exact) first
nearest neighbor, a rank of 1 to the second nearest neighbor,
and so on. Note that in all three data sets there are 100k
points, so a rank of 1 is a point among the closest .002% of
points, a rank of 2 among the closest .003%, etc.

Our data structure has one parameter: nr, the number
of representatives (recall that s is set equal to nr). Though
we suggested a setting of nr in section 4, in practice nr

will be set according to the time (or error) requirements of
the system. Here we make a simple choice of nr = 1024
for a database of size n = 100k, and scale it up to the
larger databases according to equation 1. This choice is an
educated guess that seems to work well, but is essentially
unoptimized. Refer back to table 2 for the exact numbers
for each data set.

Perhaps the most common setting for NN search is the of-
fline case: the data structure is built offline, and the quantity
of interest is the retrieval time. We compare the time for
search using brute force and for using RBC-based search.
The results are shown in table 3.

In some situations, it does not make sense to separate the
build time from the query time. We demonstrate that our
build algorithm is quite efficient: even when the build time
is taken into account, our method still affords roughly an
order of magnitude speedup over brute force search. See
table 4 for the numbers.

These results are quite strong. In particular, the RBC
search algorithm yields a speedup over GPU-based brute
force of one to two orders of magnitude with a very small
amount of error. For the Bio and Physics data sets, this
speedup is roughly comparable to the speedup of the mod-

7The version used for the RBC search is slightly more in-
volved, as it needs to access a stored mapping from thread
indices to database elements.



Data Total time (sec)
Bio 1.28

Physics .65
Robot 11.92

Table 4: Total computation time (i.e. the build and
search time) for the RBC experiments.

ern metric tree variants over brute force on a CPU.8 As
we remarked earlier, the GPU-based brute force procedure
is already competitive with these tree approaches for this
data. For the Robot data set, we are getting an average
query time of less than 4µs, even though the database con-
tains one million points. Note also that the performance
relative to brute force is improving as the problem size gets
larger. This is not surprising, given that the complexity of
search is O(

√
n logn), but it is a useful property of the al-

gorithm. Finally, we again emphasize that the data is fairly
high-dimensional and so is challenging for any space decom-
position scheme—on the GPU or CPU.

7. CONCLUSIONS
We introduced an exceedingly simple data structure for

nearest neighbor search on the GPU, with search and build
algorithms that are efficient on parallel systems. Our ex-
periments are quite promising: despite the difficulties as-
sociated with working on GPUs, our algorithm is able to
outperform GPU-based brute force search convincingly on
several challenging data sets. There is a tremendous amount
of future work to be done, including a theoretical analysis
of the search algorithm and a more careful investigation of
the effect of the algorithm parameters on performance. Fur-
thermore, there is still considerable room for improvement
in our implementation.

8. ACKNOWLEDGMENTS
I thank my colleagues in the Empirical Inference Depart-

ment for helpful discussions and encouragement. Thanks to
Duy Nguyen-Tuong for providing the robot data.

9. REFERENCES
[1] S. Arya, D. M. Mount, N. S. Netanyahu,

R. Silverman, and A. Wu. An optimal algorithm for
approximate nearest neighbor searching. Journal of
the ACM, 45(6):891–923, 1998.

[2] A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In Proceedings of the
International Conference on Machine Learning, 2006.

[3] S. Brin. Near neighbor search in large metric spaces.
In Proceedings of the 21th International Conference on
Very Large Data Bases, 1995.

[4] L. Cayton and S. Dasgupta. A learning framework for
nearest neighbor search. In Advances in Neural
Information Processing Systems 20, 2007.

[5] K. L. Clarkson. Nearest-neighbor searching and metric
space dimensions. In Nearest-Neighbor Methods for
Learning and Vision: Theory and Practice, pages
15–59. MIT Press, 2006.

8The Robot dataset has not been previously benchmarked.

[6] T. Foley and J. Sugerman. KD-tree acceleration
structures for a GPU raytracer. In Proceedings of
Graphics Hardware, 2005.

[7] V. Garcia, E. Debreuve, and M. Barlaud. Fast k
nearest neighbor search using GPU. In CVPR
Workshop on Computer Vision on GPU (CVGPU),
2008.

[8] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In Proceedings of the 30th annual ACM
Symposium on Theory of Computing (STOC), 1998.

[9] D. R. Karger and M. Ruhl. Finding nearest neighbors
in growth-restricted metrics. In Proceedings of the
34th Annual Symposium on Theory of Computing
(STOC), 2002.

[10] KDD cup competition, 2004.
http://kodiak.cs.cornell.edu/kddcup.

[11] R. Krauthgamer and J. R. Lee. Navigating nets:
simple algorithms for proximity search. In Proceedings
of the 15th Annual Symposium on Discrete Algorithms
(SODA), 2004.

[12] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke,
and D. Manocha. Fast BVH construction on GPUs. In
Proc. Eurographics, 2009.

[13] C. Lauterbach, Q. Mo, and D. Manocha. gProximity:
Hierarchical GPU-based operations for collision and
distance queries. In Proc. Eurographics, 2010.

[14] T. Liu, A. W. Moore, A. Gray, and K. Yang. An
investigation of practical approximate neighbor
algorithms. In Advances in Neural Information
Processing Systems, 2004.

[15] D. Nguyen-Tuong and J. Peters. Using model
knowledge for learning inverse dynamics. In Proc.
IEEE International Conference on Robotics and
Automation, 2010.

[16] S. Omohundro. Five balltree construction algorithms.
Technical report, ICSI, 1989.

[17] D. Patterson. The trouble with multicore. IEEE
Spectrum, July 2010.

[18] P. Ram, D. Lee, H. Ouyang, and A. Gray.
Rank-approximate nearest neighbor search: Retaining
meaning and speed in high dimensions. In Advances in
Neural Information Processing Systems 22, 2009.

[19] N. Satish, M. Harris, and M. Garland. Designing
efficient sorting algorithms for manycore GPUs. In
Proc. IEEE International Parallel and Distributed
Processing Symposium, 2009.

[20] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens.
Scan primitives for GPU computing. In Proceedings of
Graphics Hardware, 2007.

[21] J. K. Uhlmann. Satisfying general
proximity/similarity queries with metric trees.
Information Processing Letters, 40:175–179, 1991.

[22] V. Volkov and J. W. Demmel. Benchmarking GPUs to
tune dense linear algebra. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, 2008.

[23] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time
kd-tree construction on graphics hardware. ACM
Trans. Graph., 27(5):126, 2008.


