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Outline of the Tutorial

Part I Yevgeny

I PAC-Bayes-Hoeffding Inequality

I Application in a finite domain (co-clustering)

John

I Application in a continuous domain (SVM)

I Relation between Bayesian learning and PAC-Bayesian analysis

I Learning the prior in PAC-Bayesian bounds



Outline of the Tutorial

Part II François

I A Bit of PAC-Bayesian History

I Localized PAC-Bayesian bounds

Yevgeny

I PAC-Bayesian bounds for unsupervised learning and density
estimation

I PAC-Bayes-Bernstein inequality for martingales and its
applications in reinforcement learning

I Summary



PAC (Probably Approximately Correct) Learning
Framework (Valiant, 1984)

Approximately

Provide guarantees on the approximation error of empirical
estimates...

Probably

... that hold with high probability with respect to
representativeness of the observed sample.



Supervised Learning: Some Basic Definitions

X - sample space

Y - label space

`(y, y′) - loss function

H - hypothesis space

h(x) - prediction of hypothesis h ∈ H on sample x

L(h) = E(x,y)∼D[`(y, h(x))] - expected loss of h

L̂(h) = 1
m

∑m
i=1 `(yi, h(xi)) - empirical loss of h



Randomized Classifiers

Let ρ be a distribution over H

Randomized Classifiers
At each round of the game:

1. Pick h ∈ H according to ρ(h)

2. Observe x

3. Return h(x)

Loss of ρ

L(ρ) = E(x,y)∼D,h∼ρ[`(y, h(x))]

= Eh∼ρ[L(h)] = 〈L, ρ〉 =
{ ∑

h∈H L(h)ρ(h), Discrete H∫
H L(h)ρ(h)dh, Continuous H

L̂(ρ) = Eh∼ρ[L̂(h)] = 〈L̂, ρ〉
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KL-divergence

Let ρ and π be two distributions over H

KL(ρ‖π) = Eρ
[
ln
ρ

π

]
= 〈ρ, ln ρ

π
〉 =


∑

h ρ(h) ln
ρ(h)
π(h) , Discrete H∫

H ln
(
ρ(h)
π(h)

)
ρ(h)dh, Continuous H



PAC-Bayes-Hoeffding Inequality (McAllester, 1998, 1999)

Theorem (Simplified version)

Assume that `(y, y′) ∈ [0, 1]. Fix a reference distribution π over H.
Then for any δ ∈ (0, 1) with probability greater than 1− δ over the
sample, for all distributions ρ simultaneously:

L(ρ) . L̂(ρ) +

√
KL(ρ‖π) + ln 1

δ

2m
.

For comparison: Hoeffding’s inequality for individual h

L(h) ≤ L̂(h) +

√
ln 1

δ

2m
.

I If ρ = π, then KL(ρ‖π) = 0

I If H is finite and π(h) = 1
|H| , then

KL(ρ‖π) = 〈ln ρ
π , ρ〉

= 〈ln 1
π , ρ〉+ 〈ln ρ, ρ〉

= ln |H| −H(ρ) ≤ ln |H|
(we recover the union bound)
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Intuition Behind the Bound

〈L, ρ〉 . 〈L̂, ρ〉+

√
KL(ρ‖π) + ln 1

δ

2m
.

KL(ρ‖π) = 〈ln 1

π
, ρ〉+ 〈ln ρ, ρ〉 = 〈ln 1

π
, ρ〉︸ ︷︷ ︸

Description
length

− H(ρ)︸︷︷︸
Entropy

Trade-off
Pick ρ that minimizes the trade-off between:

1. The empirical error L̂(h)

2. The complexity (description length, prior belief) ln 1
π(h)

3. And has maximum entropy
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Relation and Difference with Bayesian Learning

L(ρ) . L̂(ρ) +

√
KL(ρ‖π) + ln 1

δ

2m
.

Relation

1. Explicit way to incorporate prior information (via π(h))

Difference

1. Explicit high-probability guarantee on the expected
performance

2. No belief in prior correctness (frequentist bound)

3. Explicit dependence on the loss function

4. Different weighting of prior belief π(h) vs. evidence L̂(h)

5. Holds for any distribution ρ (including the Bayes posterior)
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Relation and Difference with VC-theory and
Rademacher complexities

L(ρ) . L̂(ρ) +

√
KL(ρ‖π) + ln 1

δ

2m
.

Relation

1. Explicit high-probability guarantee on the expected
performance

2. Explicit dependence on the loss function

Difference

1. Complexity is defined individually for each h via π(h) (rather
than “complexity of a hypothesis class”)

2. Explicit way to incorporate prior knowledge

3. The bound is defined for randomized classifiers ρ (not
individual h); but workarounds exist in many cases
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Relation to Statistical Physics

L(ρ) . L̂(ρ) +

√
KL(ρ‖π) + ln 1

δ

2m
.

I Rewrite as a parameterized trade-off

F(ρ, β) = βmL̂(ρ) + KL(ρ‖π)

I The bound provides the optimal temperature to study the
system depending on

I The size of the sample m
I Empirical properties of the system 〈L̂, ρ〉
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PAC-Bayes-Hoeffding Inequality - Proof Idea

Theorem (Simplified version)

Assume that `(y, y′) ∈ [0, 1]. Fix a reference distribution π over H.
Then for any δ ∈ (0, 1) with probability greater than 1− δ for all
distributions ρ simultaneously:

L(ρ) . L̂(ρ) +

√
KL(ρ‖π) + ln 1

δ

2m
.



Proof Idea: Basis

Theorem (Variational Definition of KL-divergence (Donsker and

Varadhan, 1975))

KL(ρ‖π) = sup
f

(
〈f, ρ〉 − ln〈ef , π〉

)

Corollary (Change of Measure Inequality)

For any function f : H → R and any pair of distributions ρ and π:

〈f, ρ〉 ≤ KL(ρ‖π) + ln〈ef , π〉
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Proof Idea: Some More Background

Theorem (Markov’s inequality)

Let Z ≥ 0 be a random variable and δ ∈ (0, 1). Then with
probability greater than 1− δ:

Z ≤ 1

δ
E[Z]

Theorem (Hoeffding’s inequality)

Let Z1, . . . , Zm be i.i.d., such that Zi ∈ [0, 1]. Then for any λ:

E
[
eλ

1
m

∑m
i=1(E[Zi]−Zi)

]
≤ eλ2/(8m)
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Proof Idea

Step 1: Change of Measure Inequality

For any function f : H → R and any ρ and π:

〈f, ρ〉 ≤ KL(ρ‖π) + ln 〈ef , π〉

Step 2: Take f(h) = λ
(
L(h)− L̂(h)

)
. Bound 〈ef , π〉.

〈ef , π〉

≤ 1

δ
E
[
〈ef , π〉

]
(w.p. ≥ 1− δ; Markov)

=
1

δ

〈
E
[
ef
]
, π
〉

(Linearity of E; π is deterministic)

≤ 1

δ

〈
eλ

2/(8m), π
〉

(Hoeffding)

=
1

δ
eλ

2/(8m)
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(
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)
, by Markov&Hoeffding

ln〈ef , π〉 ≤ ln
1

δ
+
λ2

8m

Step 3: Substitute and normalize by λ

〈L(h)− L̂(h), ρ〉 ≤
KL(ρ‖π) + ln 1

δ

λ
+

λ

8m

Step 4: Optimize over λ
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PAC-Bayes-Hoeffding Inequality

Theorem (Simplified version)

Assume that `(y, y′) ∈ [0, 1]. Fix a reference distribution π over H.
Then for any δ ∈ (0, 1) with probability greater than 1− δ for all
distributions ρ simultaneously:
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Further Reading

Yevgeny Seldin, François Laviolette, Nicolò Cesa-Bianchi, John
Shawe-Taylor, and Peter Auer. PAC-Bayesian inequalities for
martingales. IEEE Transactions on Information Theory, 2012.
Preprint available on arxiv.



Outline of the Tutorial

Part I Yevgeny

I PAC-Bayes-Hoeffding Inequality

I Application in a finite domain (co-clustering)

John

I Application in a continuous domain (SVM)

I Relation between Bayesian learning and PAC-Bayesian analysis

I Learning the prior in PAC-Bayesian bounds



Discriminative Prediction Based on Co-clustering

Example: Collaborative Filtering

Model

ρ(y|x1, x2) =
∑
c1,c2

ρ(y|c1, c2)ρ(c1|x1)ρ(c2|x2)



PAC-Bayesian Analysis of Co-clustering

ρ(y|x1, x2) =
∑
c1,c2

ρ(y|c1, c2)ρ(c1|x1)ρ(c2|x2)

I H - all hard partitions + labels for partition cells

I π - combinatorial (next slide)

I ρ = {ρ(c1|x1), ρ(c2|x2), ρ(y|x1, x2)}



Prior Construction

I |Xi| possibilities to choose |Ci| (i ∈ {1, 2})

I ≤ |Xi||Ci|−1 possibilities to choose the sizes of the clusters

I
( |Xi|
ni1,...,n

i
|Ci|

)
≤ e|Xi|H(Ci) possibilities to assign xi-s to ci-s

I |Y ||C1||C2| possibilities to assign labels to partition cells

π(h) ≥ exp

(
2∑
i=1

(−|Xi|Hh(Ci)− |Ci| ln |Xi|)− |C1||C2| ln |Y |

)

(
4
2

)
= 6 balanced partitions 4 unbalanced partitions
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Bounding KL(ρ‖π)

π(h) ≥ exp

(
2∑
i=1

(−|Xi|Hh(Ci)− |Ci| ln |Xi|)− |C1||C2| ln |Y |

)

ρ = {ρ(c1|x1), ρ(c2|x2), ρ(y|x1, x2)}

After some calculations...

KL(ρ‖π) ≤
2∑
i=1

(|Xi|Iρ(Xi;Ci) + |Ci| ln |Xi|) + |C1||C2| ln |Y |

ρ(xi, ci) =
1

|Xi|
ρ(ci|xi)
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PAC-Bayesian Bound for Co-clustering

With probability ≥ 1− δ, for all ρ:

L(ρ) ≤ L̂(ρ)+

√∑2
i=1 (|Xi|Iρ(Xi;Ci) + |Ci| ln |Xi|) + |C1||C2| ln |Y |+ ln 1

δ
+ ν(ρ)

2m

Lowest
Complexity

Iρ(Xi;Ci) = 0

Lower
Complexity

Higher
Complexity

Highest
Complexity

Iρ(Xi;Ci) = ln |Xi|



Two Types of Prior Knowledge

With probability ≥ 1− δ, for all ρ:

L(ρ) ≤ L̂(ρ)+

√∑2
i=1 (|Xi|Iρ(Xi;Ci) + |Ci| ln |Xi|) + |C1||C2| ln |Y |+ ln 1

δ
+ ν(ρ)

2m

Structural Prior Knowledge

Exploits symmetries in the hypothesis space

Prior Knowledge about the Distribution

Breaks the structural symmetries



Application: Collaborative Filtering

MovieLens Dataset

I 100,000 ratings on a five-star scale

I 80,000 ratings for training and 20,000 ratings for testing
(5-fold)

I 943 viewers; 1680 movies

I State-of-the-art Mean Absolute Error 0.72

Bound:

L(ρ) ≤ L̂(ρ)+

√∑2
i=1 (|Xi|Iρ(Xi;Ci) + |Ci| ln |Xi|) + |C1||C2| ln |Y |+ ln 1

δ
+ ν(ρ)

2m

Replace with a trade-off and apply linear search over β

F(ρ, β) = βmL̂(ρ) +
2∑
i=1

|Xi|Iρ(Xi;Ci)
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50x50 Clusters
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283x283 Clusters
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Summary of the Experiments

I The optimal performance is achieved even with 283x283
clusters

I 1
β

∑2
i=1 |Xi|Iρ(Xi;Ci) has a complete control over the model

complexity

I The bound is meaningful, even though not tight



Further Reading

The results can be extended to:

I Matrix tri-factorization A = LMR

I Tree-shaped graphical models

X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

Y

Further Reading

Yevgeny Seldin and Naftali Tishby. PAC-Bayesian analysis of
co-clustering and beyond. JMLR, 2010.



Outline of the Tutorial

Part I Yevgeny

I PAC-Bayes-Hoeffding Inequality

I Application in a finite domain (co-clustering)

John

I Application in a continuous domain (SVM)

I Relation between Bayesian learning and PAC-Bayesian analysis

I Learning the prior in PAC-Bayesian bounds
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The small kl divergence

I Let p and q be biases of two Bernoulli random variables.

kl(q‖p) = q ln
q

p
+ (1− q) ln

1− q
1− p

= KL([q, 1− q]‖[p, 1− p])

I By Pinsker’s inequality:

kl(q‖p) ≥ 2(q − p)2

Here is a comparison between kl(q‖p) and 2(q − p)2 when p varies

a) when q = .5 b) when q = .01
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Seeger version of the bound

I We consider the 0-1 loss

`(y, y′) =
{

0; if y = y′

1; otherwise.

〈L, ρ〉 = E(x,y)∼D,c∼ρ[`(y, c(x))] = Pr(x,y)∼D,c∼ρ(c(x) 6= y)

〈L̂, ρ〉 = Pr(x,y)∼S,c∼ρ(c(x) 6= y)

I Seeger’s PAC-Bayesian Theorem Fix an arbitrary D,
arbitrary prior π, and confidence δ, then with probability at
least 1− δ over samples S ∼ Dm, all posteriors ρ satisfy

kl(〈L̂, ρ〉‖〈L, ρ〉) ≤ KL(ρ‖π) + ln((m+ 1)/δ)
m

I Gives a tighter bound than PAC-Bayes-Hoeffding, particularly
for small empirical error rates.
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Linear classifiers

I We consider linear classifiers in a kernel κ defined feature
space:

F = {cw : x 7→ sgn (〈w, φ(x)〉)}

where 〈φ(x), φ(z)〉 = κ(x, z).

I The mapping φ embeds the input space into a Hilbert space,
which is usually specified by the kernel κ satisfying the
positive semi-definite property.

I We will be considering deterministic classifiers such as SVMs,
but the bounds will be using stochastic classifiers defined
through distributions over F

I Note that any threshold must be represented and learnt
through inclusion of a constant feature.
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Linear classifiers

I We will choose the prior and posterior distributions over F to
be Gaussians with unit variance.

I The prior π will be centered at the origin with unit variance

I The specification of the centre for the posterior ρ(w, µ) will
be by a unit vector w and a scale factor µ.
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PAC-Bayes Bound for SVM

I Prior π is Gaussian N (0, 1)

I Posterior is in the direction w

I at distance µ from the origin

I Posterior ρ is Gaussian



PAC-Bayes Bound for SVM

Linear classifiers performance may be bounded by

kl(〈L̂, ρ(w, µ)〉‖ 〈L, ρ(w, µ)〉 ) ≤
KL(ρ(w, µ)‖π) + ln m+1

δ

m

I 〈L, ρ(w, µ)〉 true performance of the stochastic classifier
Ec∼ρ(w,µ)[c(x) 6= y]

I SVM is deterministic classifier that exactly corresponds to
sgn

(
Ec∼ρ(w,µ)[c(x)]

)
6= y as centre of the Gaussian gives the

same classification as halfspace with more weight.

I Hence its error bounded by 2〈L, ρ(w, µ)〉, since if x
misclassified at least half of c ∼ ρ err.
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PAC-Bayes Bound for SVM

Linear classifiers performance may be bounded by

kl( 〈L̂, ρ(w, µ)〉 ‖〈L, ρ(w, µ)〉) ≤
KL(ρ(w, µ)‖π) + ln m+1

δ

m

I 〈L̂, ρ(w, µ)〉 stochastic measure of the training error

I 〈L̂, ρ(w, µ)〉 = 1
m

∑m
j=1 F̃ (µγ(xj , yj))

I where F̃ (µγ(x, y)) is probability of error of stochastic
classifier on example (x, y)

I where γ(x, y) = (ywTφ(x))/(‖φ(x)‖‖w‖)
I and F̃ (t) = 1− 1√

2π

∫ t
−∞ e

−x2/2dx
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I and F̃ (t) = 1− 1√

2π

∫ t
−∞ e

−x2/2dx
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I Prior π ≡ Gaussian centered on the origin

I Posterior ρ ≡ Gaussian along w at a distance µ from the
origin

I KL(ρ‖π) = µ2/2
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Form of the SVM bound

I Note that bound holds for all posterior distributions so that
we can choose µ to optimise the bound

I If we define the inverse of the kl by

kl−1(q, A) = max{p : kl(q‖p) ≤ A}

then have with probability at least 1− δ

Pr (sgn (〈w, φ(x)〉) 6= y) ≤

2 min
µ

kl−1

 1
m

m∑
j=1

F̃ (µγ(xj , yj)),
µ2/2 + ln m+1

δ

m
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Model Selection with the new bound: setup

I Comparison with X-fold Xvalidation, PAC-Bayes Bound and
the Prior PAC-Bayes Bound

I UCI datasets
I Select C and σ that lead to minimum Classification Error

(CE)

I For X-F XV select the pair that minimize the validation error
I For PAC-Bayes Bound and Prior PAC-Bayes Bound select the

pair that minimize the bound
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Description of the Datasets

Problem # samples input dim. Pos/Neg

Handwritten-digits 5620 64 2791 / 2829

Waveform 5000 21 1647 / 3353

Pima 768 8 268 / 500

Ringnorm 7400 20 3664 / 3736

Spam 4601 57 1813 / 2788

Table: Description of datasets in terms of number of patterns, number
of input variables and number of positive/negative examples.



Results

Classifier
SVM

Problem 2FCV 10FCV PAC

digits Bound – – 0.175
CE 0.007 0.007 0.007

waveform Bound – – 0.203
CE 0.090 0.086 0.084

pima Bound – – 0.424
CE 0.244 0.245 0.229

ringnorm Bound – – 0.203
CE 0.016 0.016 0.018

spam Bound – – 0.254
CE 0.066 0.063 0.067



Outline of the Tutorial

Part I Yevgeny

I PAC-Bayes-Hoeffding Inequality

I Application in a finite domain (co-clustering)

John

I Application in a continuous domain (SVM)

I Relation between Bayesian learning and PAC-Bayesian
analysis

I Learning the prior in PAC-Bayesian bounds



Relation and Difference with Bayesian Learning

kl(〈L̂, ρ〉‖〈L, ρ〉) ≤ KL(ρ‖π) + ln((m+ 1)/δ)
m

Relation

1. Explicit way to incorporate prior information (via π)

Difference

1. Explicit high-probability guarantee on the expected
performance

2. No belief in prior correctness (frequentist bound)

3. Explicit dependence on the loss function

4. Different weighting of prior belief π(h) vs. evidence L̂(h)
5. Holds for any distribution ρ (including the Bayes posterior)
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Learning the prior

I Bound depends on the distance between prior and
posterior

I Better prior (closer to posterior) would lead to tighter bound

I Learn the prior π with part of the data

I Introduce the learnt prior in the bound

I Compute stochastic error with remaining data
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New Bound for the SVM
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0.5‖µw − ηwr‖2 + ln (m−r+1)J
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I 〈L, ρ(w, µ)〉 true performance of the classifier
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Results

Classifier
SVM

Problem 2FCV 10FCV PAC PrPAC

digits Bound – – 0.175 0.107
CE 0.007 0.007 0.007 0.014

waveform Bound – – 0.203 0.185
CE 0.090 0.086 0.084 0.088

pima Bound – – 0.424 0.420
CE 0.244 0.245 0.229 0.229

ringnorm Bound – – 0.203 0.110
CE 0.016 0.016 0.018 0.018

spam Bound – – 0.254 0.198
CE 0.066 0.063 0.067 0.077



Prior-SVM

I New bound proportional to ‖µw − ηwr‖2

I Classifier that optimises the bound
I Optimisation problem to determine the p-SVM

minw,ξi

[
1
2
‖w −wr‖2 + C

m∑
i=r+1

ξi

]
s.t. yiwTφ(xi) ≥ 1− ξi i = r + 1, . . . ,m

ξi ≥ 0 i = r + 1, . . . ,m

I The p-SVM is only solved with the remaining points
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Bound for p-SVM

1. Determine the prior with a subset of the training examples to
obtain wr

2. Solve p-SVM and obtain w
3. Margin for the stochastic classifier c ∼ ρ

γ(xj , yj) =
yjwTφ(xj)
‖φ(xj)‖‖w‖

j = r + 1, . . . ,m

4. Linear search to obtain the optimal value of µ. This
introduces an insignificant extra penalty term
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η-Prior-SVM

I Consider using a prior distribution π that is elongated in the
direction of wr

I This will mean that there is low penalty for large projections
onto this direction

I Translates into an optimisation:

min
v,η,ξi

[
1
2
‖v‖2 + C

m∑
i=r+1

ξi

]

I subject to

yi(v + ηwr)Tφ(xi) ≥ 1− ξi i = r + 1, . . . ,m
ξi ≥ 0 i = r + 1, . . . ,m
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Bound for η-prior-SVM

I Prior is elongated along the line of wr but spherical with
variance 1 in other directions

I Posterior again on the line of w at a distance µ chosen to
optimise the bound.

I Resulting bound depends on a benign parameter τ
determining the variance in the direction wr

kl(〈L̂Sm−r
, ρ(w, µ)〉‖〈L, ρ(w, µ)〉) ≤

0.5(ln(τ2) + τ−2 − 1 + P
‖
wr (µw −wr)2/τ2 + P⊥wr

(µw)2) + ln(m−r+1
δ )

m− r
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Results

Classifier
SVM ηPrior SVM

Problem 2FCV 10FCV PAC PrPAC PrPAC τ -PrPAC

digits Bound – – 0.175 0.107 0.050 0.047
CE 0.007 0.007 0.007 0.014 0.010 0.009

waveform Bound – – 0.203 0.185 0.178 0.176
CE 0.090 0.086 0.084 0.088 0.087 0.086

pima Bound – – 0.424 0.420 0.428 0.416
CE 0.244 0.245 0.229 0.229 0.233 0.233

ringnorm Bound – – 0.203 0.110 0.053 0.050
CE 0.016 0.016 0.018 0.018 0.016 0.016

spam Bound – – 0.254 0.198 0.186 0.178
CE 0.066 0.063 0.067 0.077 0.070 0.072



Data distribution dependent prior

I Consider the Gaussian prior centred on the weight vector:

wπ = E[yφ(x)]

I Note that we do not know this vector, but it is nonetheless
fixed independently of the training sample.

I We can compute a sample based estimate of this vector as

ŵπ = ES [yφ(x)] =
1
m

m∑
i=1

yiφ(xi)
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Estimating the KL divergence

I KL divergence is simple have the squared distance.

I With probability 1− δ/2 we have

‖ŵπ −wπ‖ ≤
R√
m

(
2 +

√
2 ln

2
δ

)
.

I We can therefore w.h.p. upper bound KL divergence between
prior π, an isotropic Gaussian at wπ, and posterior ρ, an
isotropic Gaussian at w by

1
2

(
‖w − ŵπ‖+

R√
m

(
2 +

√
2 ln

2
δ

))2
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Resulting bound

I Giving the following bound on generalisation:

kl(〈L̂, ρ(w, µ)〉‖〈L, ρ(w, µ)〉) ≤
1
2

(
‖µw − ηŵπ‖+ η R√

m

(
2 +

√
2 ln 2

δ

))2

+ ln 2(m+1)
δ

m

with probability 1− δ.

I Values of the bounds for an SVM.

Prob. PAC-Bayes PrPAC τ -PrPAC E PrPAC τ -E PrPAC

han 0.175 0.107 0.108 0.157 0.176

wav 0.203 0.185 0.184 0.202 0.205

pim 0.424 0.420 0.423 0.428 0.433

rin 0.203 0.110 0.110 0.201 0.204

spa 0.254 0.198 0.198 0.249 0.255
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I A bit of PAC-Bayesian history

I Localized PAC-Bayesian bounds

Yevgeny

I PAC-Bayesian bounds for unsupervised learning and density
estimation

I PAC-Bayes-Bernstein inequality for martingales and its
applications in reinforcement learning

I Summary



Definitions often related to PAC-Bayes bound in supervised
learning

I Each example (x, y) ∈ X × {−1,+1}, is drawn iid acc. to D.

I The (true) risk R(h) and training error RS(h) are defined as:

R(h) def= E
(x,y)∼D

I(h(x) 6= y) ; RS(h) def=
1
m

m∑
i=1

I(h(xi) 6= yi) .

where I(y′ 6= y) is the so called 0− 1 loss.

I The learner’s goal is to choose a posterior distribution ρ on
a space H of hypothesis such that the risk of the ρ-weighted
majority vote Bρ is as small as possible.

Bρ(x) def= sgn
[

E
h∼ρ

h(x)
]

I Bρ is also called the Bayes classifier.
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The Gibbs clasifier

I PAC-Bayes approach does not directly bounds the risk of Bρ

I It bounds the risk of the Gibbs classifier Gρ:

I to predict the label of x, Gρ draws h from H according to ρ,
and predicts h(x)

I The risk and the training error of Gρ are thus defined as:

R(Gρ) = E
h∼ρ

R(h) ; RS(Gρ) = E
h∼ρ

RS(h) .
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Gρ, Bρ, and KL(ρ‖π)

I If Bρ misclassifies x, then at least half of the hypothesis
(under measure ρ) err on x.

I Hence: R(Bρ) ≤ 2R(Gρ)
I Thus, an upper bound on 2R(Gρ) gives rise to an upper

bound on R(Bρ)
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History
I Pre-pre-history: Variational Definition of KL-divergence

Donsker and Varadhan (1975)

Eρ[Φ] ≤ KL(ρ‖π) + ln Eπ[eΦ]

or in the context of this tutorial:

〈f, ρ〉 ≤ KL(ρ‖π) + ln〈ef , π〉
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Graphical illustration of the Seeger bound
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PAC-Bayes and the sample compression setting

This is an important setting.

As example, in its dual version, the SVM can be viewed as a Bayes
classifier of the form

Bw(x) = sgn
[

E
i∼w

k(xi,x)
]

the hypothesis being here hi(·) = k(xi, ·).

Problem:

I Recall once more that the prior is not allowed to depend on
the training set.

I How a prior on a set of hypothesis construct from the data
can be data-independent ?

I The trick : put a prior on the possible ways that hypothesis
can be constructed when given the data
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History
I Pre-pre-history: Variational Definition of KL-divergence

Donsker and Varadhan (1975)

I Pre-history: PAC analysis of Bayesian estimators Shawe-Taylor
and Williamson (1997); Shawe-Taylor et al. (1998)

I Birth: First PAC-Bayesian theorems McAllester (1998, 1999)

I Introduction of kl form Seeger (2002); Langford (2005)

I Applications in supervised learning

I Density estimation Seldin and Tishby (2010); Higgs and
Shawe-Taylor (2010)

I Martingales & reinforcement learning Seldin et al. (2011, 2012)

I Sincere apologizes to everybody we could not fit on the slide...



Algorithms derived from PAC-Bayes Bound

When given a PAC-Bayes bound, one can easily derive a learning
algorithm that will simply consist of finding the posterior ρ that
minimizes the bound.

Catoni’s bound

Pr
S∼Dm


∀ ρ onH :

R(Gρ) ≤ 1
1−e−C

{
1−exp

[
−
(
C ·RS(Gρ)

+ 1
m

[
KL(ρ‖π) + ln 1

δ

])]}
 ≥ 1 − δ.

Interestingly, minimizing the Catoni’s bound (when prior and
posterior are restricted to Gaussian) give rise to the SVM !
In fact to an SVM where the Hinge loss is replaced by the sigmoid
loss.
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Algorithms derived from PAC-Bayes Bound (cont)

Not only SVM has been rediscover as a PAC-Bayes bound
minimizer, we also have:

I KL-Regularized Adaboost Germain et al. (2009b)

I Kernel Ridge Regression Germain et al. (2011)

I the proposed structured output algorithm of Cortes et
al. (2007) Unpublished work of Giguère et al. (2012)

New algorithms have been found: Ambroladze et al. (2007);

Shawe-Taylor and Hardoon (2009); Germain et al. (2011); Laviolette

et al. (2011), . . .
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Outline of the Tutorial

Part II François

I A bit of PAC-Bayesian history

I Localized PAC-Bayesian bounds

Yevgeny

I PAC-Bayesian bounds for unsupervised learning and density
estimation

I PAC-Bayes-Bernstein inequality for martingales and its
applications in reinforcement learning

I Summary



What is a localized PAC-Bayesian bound ?

Basically, a PAC-Bayesian bound depends on two quantities:

L(ρ) ≤ L̂(ρ) +

√
KL(ρ‖π) + ln ξ(m)

δ

2m
.

I Hence, the bound expresses a tradeoff to be followed for
finding suitable choices of the posterior distribution ρ.

I A tradeoff between “empirical accuracy” and “complexity”;
the complexity being quantify by how far a posterior
distributions is from our prior knowledge.

I Thus, some “luckiness argument” is involved here.
This can be good, but one might want to have some guarantees
that, even in unlucky situations, the bound does not degrade over
some level.

(In general the KL-divergence can be very large ... even infinite)
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Localized PAC-Bayesian bounds :
a way to reduce the KL-complexity term

I If something can be done to ensure that the bound remains
under control it has to be based on the choice of the prior.

L(ρ) . L̂(ρ) +

√
KL(ρ‖π) + ln ξ(m)

δ

2m
.

I However, recall that the prior is not allowed to depend in any
way on the training set.
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Localized PAC-Bayesian bounds :
(1) Let us simply learn the prior !

I As stated in the first part of this tutorial: one may leave a
part of the training set in order to learn the prior, and only use
the remaining part of it to calculate the PAC-Bayesian bound.

I A. Ambroladze, E. Parrado-Hernndez, and J. Shawe-Taylor.
Tighter PAC-Bayes bounds. In Advances in Neural Information
Processing Systems 18, (2006) Pages 9-16.

I P. Germain, A. Lacasse, F. Laviolette and M. Marchand.
PAC-Bayesian learning of linear classifiers, in Proceedings of
the 26nd International Conference on Machine Learning
(ICML’09, Montréal, Canada.). ACM Press (2009), 382, Pages
453-460.
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Localized PAC-Bayesian bounds: (2) distribution-dependent!

I Even if the prior can not be data dependent, it can depend on
the distribution D that generates the data.

I How can this be possible ? D is supposed to be unknown !
I Thus, π will have to remain unknown !
I But may be we can manage to nevertheless estimate KL(ρ‖π).

This is all we need here.

This has been proposed in
I the previous part of this tutorial, dedicated to linear separator

when the chosen prior was: wp = E(x,y)∼D(yφφφ(x)) .

I O. Catoni. A PAC-Bayesian approach to adaptive
classification. Preprint n.840, Laboratoire de Probabilités et
Modèles Aléatoires, Universités Paris 6 and Paris 7, 2003.

I G. Lever, F. Laviolette, J. Shawe-Taylor.
Distribution-Dependent PAC-Bayes Priors. Proceedings of the
21st International Conference on Algorithmic Learning Theory
(ALT 2010), 119-133.
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Localized PAC-Bayesian bounds :
(2) Distribution-Dependent PAC-Bayes Priors (cont)

I in particular, Lever et al propose a distribution dependent
prior of the form:

π(h) =
1
Z

exp(−γR(h)) ,

for some a priori chosen hyper-parameter gamma.

I Such distribution dependent priors are designed to put more
weight on accurate hypothesis and exponentially decrease the
weight as the accuracies are decreasing. (A “wise” choice).

I Then, we can bound the KL-term under the restriction that
the posterior is of the form

ρ(h) =
1
Z ′

exp(−γRS(h)) .

Again a suitable form for a posterior (and which this time is a
known quantity).
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weight as the accuracies are decreasing. (A “wise” choice).

I Then, we can bound the KL-term under the restriction that
the posterior is of the form

ρ(h) =
1
Z ′

exp(−γRS(h)) .

Again a suitable form for a posterior (and which this time is a
known quantity).
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Localized PAC-Bayesian bounds :
(2) Distribution-Dependent PAC-Bayes Priors (cont)

The KL-term is bounded as follows:

KL(ρ‖π) ≤ γ√
m

√
ln

2ξ(m)
δ

+
γ2

4m
.

The trick: we apply a second PAC-bayesian bound and applied it
to the KL-term.

This gives rise to a very tight localized PAC-Bayesian bound:

Lever et al. (2010)

For any D, any H, any π of support H, any δ ∈ (0, 1], we have

Pr
S∼Dm

(
∀ ρ onH : kl(RS(Gρ), R(Gρ)) ≤

1
m

[
γ√
m

√
ln

2ξ(m)
δ/2

+
γ2

4m
+ ln

ξ(m)
δ/2

])
≥ 1− δ .
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Localized PAC-Bayesian bounds :
(2) Distribution-Dependent PAC-Bayes Priors (cont)
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Localized PAC-Bayesian bounds :
(3) Let us do magic and let us simply make the KL-term disappear

Consider any auto-complemented set H of hypothesis. We say that
ρ is aligned on π iff for all h ∈ H, we have

ρ(h) + ρ(−h) = π(h) + π(−h) .

Note: we can construct any (almost any if H is uncountable)
majority vote with aligned posteriors.
In other words, for any posterior ρ, there is a posterior ρ′, aligned
on π such that Bρ(x) = Bρ′(x) .

So, same classification capacity if one restrict itself to aligned
posterior.
But then, the KL-term vanishes from the PAC-Bayesian bound !!!

MAGIC !!!
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Absence of KL for Aligned Posteriors

General theorem (McAllester)
KL(ρ‖π) arises when transforming the
expectation over π to the expectation
over ρ:

ln
[

E
h∼π

em·2(RS(h)−R(h))2
]

≥ ln
[

E
h∼ρ

π(h)
ρ(h)

em·2(RS(h)−R(h))2
]

≥ E
h∼ρ

ln
[
π(h)
ρ(h)

em·2(RS(h)−R(h))2
]

= m E
h∼ρ

2 (RS(h)−R(h))2 −KL(ρ‖π)

...

Aligned posterior theorem
Here, we do the same
operation for “free” (proof on
next slide):

ln
[

E
h∼π

em·2(RS(h)−R(h))2
]

= ln
[

E
h∼ρ

em·2(RS(h)−R(h))2
]

≥ E
h∼ρ

ln
[
em·2(RS(h)−R(h))2

]
= m E

h∼ρ
2 (RS(h)−R(h))2
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Absence of KL for Aligned Posteriors
Let H = H1 ∪H2 with H1 ∩H2 = ∅ such that for each h ∈ H1 : −h ∈ H2.

E
h∼π

em·2(RS(h)−R(h))2

=
∫
h∈H1

dπ(h)em·2(RS(h)−R(h))2 +
∫
h∈H2

dπ(h)em·2(RS(h)−R(h))2

=
∫
h∈H1

dπ(h)em·2(RS(h)−R(h))2 +
∫
h∈H1

dπ(−h)em·2((1−RS(h))−(1−R(h)))2

=
∫
h∈H1

dπ(h)em·2(RS(h)−R(h))2 +
∫
h∈H1

dπ(−h)em·2(RS(h)−R(h))2

=
∫
h∈H1

(dπ(h) + dπ(−h)) em·2(RS(h)−R(h))2

=
∫
h∈H1

(dρ(h) + dρ(−h)) em·2(RS(h)−R(h))2

...

= E
h∼ρ

em·2(RS(h)−R(h))2 .
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PAC-Bayesian Inequality for Discrete Density
Estimation

Lemma
Let Z1, . . . , Zm be m random variables drawn according to an
unknown distribution p on {1, . . . ,K}. Let p̂ be the empirical
distribution on {1, . . . ,K} corresponding to the sample.

E
[
emKL(p̂‖p)

]
≤ (m+ 1)K−1.

1 2 . . . K

pi 0.1 0.3 . . . 0.2

mi 12 24 . . . 19

p̂i = mi/m 12/100 24/100 . . . 19/100
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PAC-Bayes-KL Inequality

I X - sample space

I p - distribution over X
I H - hypothesis space

I Z - finite, |Z| = K

I Each h ∈ H is a mapping h : X → Z
I ph - induced distribution over Z
I p̂h - induced empirical distribution over Z

Theorem (PAC-Bayes-KL Inequality)

W.p. ≥ 1− δ for all ρ simultaneously:

KL(〈p̂h, ρ〉‖〈ph, ρ〉) ≤
KL(ρ‖π) + (K − 1) ln(m+ 1) + ln 1

δ

m
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Application Example: Density Estimation with
Co-clustering

Input

Sample (X1
1 , X

2
1 ), . . . , (X1

m, X
2
m)

Goal
Build an estimator ρ(x1, x2) that minimizes
−Ep(X1,X2)

[
ln ρ(X1, X2)

]

Direct Estimation
Requires ∼ |X1||X2| samples

Can we do better?
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Application Example: Density Estimation with
Co-clustering

Idea
Try to find block structures

Model
ρ = {ρ(c1|x1), ρ(c2|x2)}

ρ(x1, x2) =
∑

c1,c2 p̃ρ(c
1, c2)

∏2
i=1

p̃(xi)
p̃ρ(ci)

ρ(ci|xi)
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Application Example: Density Estimation with
Co-clustering

Bound
W.p. ≥ 1− δ:

−Ep(x1,x2)

[
ln ρ(X1, X2)

]
≤

(
2∑
i=1

Ĥ(Xi)

)
︸ ︷︷ ︸

Approximation
by product
of marginals

− Îρ(C
1;C2)︸ ︷︷ ︸

Added
value of
clustering

+ ln(|C1||C2|)
√∑

i |Xi|Iρ(Xi;Ci) + ...

2m︸ ︷︷ ︸
Complexity of clustering

+...

Îρ(C
1;C2) = 0

Iρ(X
i;Ci) = 0

Îρ(C
1;C2) = Î(X1;X2)

Iρ(X
i;Ci) = ln |Xi|



Further Reading

Discrete Density Estimation

Yevgeny Seldin and Naftali Tishby. PAC-Bayesian analysis of
co-clustering and beyond. JMLR, 2010.

I Graph clustering

I Topic models

Continuous Density Estimation

Matthew Higgs and John Shawe-Taylor. A PAC-Bayes bound for
tailored density estimation. In ALT, 2010.

I Kernel density estimation
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Martingales

Martingale difference sequence

Z1, . . . , Zn is a martingale difference sequence if

E[Zi|Z1, . . . , Zi−1] = 0

Martingale

Let

Mj =

j∑
i=1

Zi

then M1, . . . ,Mn is a martingale.

Examples

I Random walk

I Gambler’s capital



PAC-Bayesian Inequalities for Martingales

H



M1(1) →
↘ M2(1) →

↘ · · · →
↘ Mn(1)

l l l
M1(2)

↗
→
↘

M2(2)
↗
→
↘
· · · ↗

→
↘

Mn(2)

l l l
...

...
. . .

...
l l l

M1(h)
↗
→
↘

M2(h)
↗
→
↘
· · · ↗

→
↘

Mn(h)

l l l
...

...
. . .

...

−−−−−−−−→
time

〈Mn, ρ〉 ≤ ???

Example: Capital of multiple gamblers in a zero-sum game



Background: Bernstein’s Inequality for Martingales

Lemma (Bernstein’s Inequality for Martingales)

Let Z1, . . . , Zn be a martingale difference sequence, such that
Zi ≤ C for all i.

Let Mn =
∑n

i=1 Zi and Vn =
∑n

i=1 E[Z2
i |Z1, . . . , Zi−1].

Then for any fixed λ ∈ [0, 1
C ]:

E
[
eλMn−(e−2)λ2Vn

]
≤ 1.



PAC-Bayes-Bernstein Inequality for Martingales

Theorem (PAC-Bayes-Bernstein Inequality)

Assume that |Zi(h)| ≤ C for all i and h with probability 1. Fix a
reference distribution π over H. Then, for any δ ∈ (0, 1) with
probability greater than 1− δ, simultaneously for all distributions ρ
over H that satisfy

“certain technical condition”

we have

|〈Mn, ρ〉| .

√
〈Vn, ρ〉

(
KL(ρ‖π) + ln

1

δ

)



Application Example: Importance Weighted
Sampling in Multiarmed Bandits

Multiarmed Bandits

I Given a set A of K actions

I Each action a ∈ A yields reward R distributed by p(r|a) and
bounded in [0, 1]

I r(a) = ER∼p(r|a)[R] - expected reward for playing a

Game round

I At each round t the player plays action At ∈ A
I The player obtains reward Rt for the action At
I Rewards for other actions are not observed
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Applications

I Online advertisement

I Medical (and other) experiment design

I Adaptive routing

I ...



Exploration-exploitation trade-off

I Let â∗t be empirically best action at time t

I Should we play â∗t at round t+ 1 or try another a?



Multiarmed Bandits with Side Information

a1 ... aK
s1
... p(r|ai, sj)
sN

Setting

I S - a set of states

I Each state corresponds to a multiarmed bandit

I States are drawn according to a fixed distribution p(s)



Importance Weighted Sampling
In Multiarmed Bandits

Define pseudo-rewards

Rat =

{ 1
ρt(a)

Rt, if At = a

0, otherwise

Ra
t is an unbiased estimate of r(a)

E[Rat |game history] = ρt(a)

(
1

ρt(a)
E[Rt|game history, At = a]

)
+ 0

= r(a)

Martingales

(Ra1 − r(a)), (Ra2 − r(a)), . . . is a martingale difference sequence
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Variance of Importance Weighted Sampling

Rat =

{ 1
ρt(a)

Rt, if At = a

0, otherwise

E[Rat |game history] = r(a)

Variance

E
[
(Rat − r(a))2

∣∣game history
]
≤ 1

ρt(a)



Multiarmed Bandits with Side Information
Hypothesis Space

H - all possible deterministic strategies
Each h ∈ H assigns one action to each state a = h(s)
|H| = KN

Example:

a1 a2 a3
s1 *
s2 *
s3 *
s4 *



Multiarmed Bandits with Side Information
Game Round

a1 ... aK
s1
... p(r|ai, sj)
sN

Game Round

I Pick a policy ρt(a|s)
I Observe side information St ∼ p(s)
I Play an action At ∼ ρt(a|St)
I Obtain a reward Rt ∼ p(r|At, St).
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Multiarmed Bandits with Side Information

Importance-Weighted Rewards

Ra,Stt =

{ 1
ρt(a|St)Rt, if At = a

0, otherwise.

R̂t(h) =

t∑
i=1

R
h(Si),Si
i

Regret

∆(h) = R(h∗)−R(h)

∆̂t(h) = R̂t(h
∗)− R̂t(h).

Martingales (
∆̂t(h)− t∆(h)

)
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PAC-Bayesian Regret Bound

Reminder: PAC-Bayes-Bernstein Inequality for Martingales

|〈Mn, ρ〉| .

√
〈Vn, ρ〉

(
KL(ρ‖π) + ln

1

δ

)

Treating KL(ρ‖π)
Pick a combinatorial prior π over H, then:
KL(ρ‖π) ≤ N Iρ(S;A) +K lnN +K lnK

Treating 〈Vn, ρ〉
Smooth the playing strategies for all t < n by ε
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PAC-Bayesian Regret Bound

〈∆, ρn〉 =
1

n
〈
(
n∆− ∆̂n

)
︸ ︷︷ ︸
Martingales

, ρn〉+
1

n
〈∆̂n, ρn〉

≤
√
〈Vn, ρn〉(N Iρn(S;A) +K lnN + ...)...

n︸ ︷︷ ︸
Policy complexity

+
1

n
〈∆̂n, ρn〉︸ ︷︷ ︸
Empirical

Performance

Remarks

0 ≤ N Iρn(S;A) ≤ N lnK

ln |H| = ln
(
KN

)
= N lnK
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Experiments
Setting

Experiment 1
a1 ... a20

s1 0.6 0.5 0.5
... 0.6 0.5 0.5

s100 0.6 0.5 0.5

H(Ah
∗
) = ln(1) = 0

Experiment 2
a1 a2 a3 ... a20

s1 0.6 0.5 0.5 0.5 0.5
... 0.6 0.5 0.5 0.5 0.5

s33 0.5 0.6 0.5 0.5 0.5
... 0.5 0.6 0.5 0.5 0.5

s66 0.5 0.5 0.6 0.5 0.5
... 0.5 0.5 0.6 0.5 0.5

s100 0.5 0.5 0.6 0.5 0.5

H(Ah
∗
) = ln(3) ≈ 1

Experiment 3

H(Ah
∗
) = ln(7) ≈ 3

Experiment 4

H(Ah
∗
) = ln(20) ≈ 4
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Experiments - Regret Graph
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Experiments - Bound
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Experiments - Mutual Information
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Further Reading

Yevgeny Seldin, François Laviolette, Nicolò Cesa-Bianchi, John
Shawe-Taylor, and Peter Auer. PAC-Bayesian inequalities for
martingales. IEEE Transactions on Information Theory, 2012.
Preprint available on arxiv.

Yevgeny Seldin, Peter Auer, François Laviolette, John
Shawe-Taylor, and Ronald Ortner. PAC-Bayesian analysis of
contextual bandits. In NIPS, 2011.



Outline of the Tutorial

Part II François

I A Bit of PAC-Bayesian History

I Localized PAC-Bayesian bounds

Yevgeny

I PAC-Bayesian bounds for unsupervised learning and density
estimation

I PAC-Bayes-Bernstein inequality for martingales and its
applications in reinforcement learning

I Summary



Summary: A General Workflow for Deriving a
PAC-Bayesian Bound

〈f, ρ〉 ≤ KL(ρ‖π) + ln〈ef , π〉

I Design a hypothesis space H
I Design a reference measure π over H
I Pick f(h)

I Bound E[〈ef , π〉] (usually, by bounding E[ef ])

I Pick the form of ρ

I Bound KL(ρ‖π)

I Combine everything together



Summary

〈f, ρ〉 ≤ KL(ρ‖π) + ln〈ef , π〉

Choice of f Choice of π

PAC-Bayes-Hoeffding Combinatorial

f(h) = λ(L(h)− L̂(h)) KL(ρ‖π) ≤ Iρ(X;C)
PAC-Bayes-kl Gaussian

f(h) = nkl(L̂(h)‖L(h))
↖↗
←→
↙↘

KL(ρ‖π) ≤ ‖w‖2
PAC-Bayes-Bernstein Laplacian

f(h)=λ(L̂(h)−L(h))
−(e−2)λ2Vn(h)

KL(ρ‖π) ≤ ‖w‖1
PAC-Bayes-KL Distribution-Dependent

f(h) = nKL(p̂(h)‖p(h)) KL(ρ‖π) ≤ γ
√

ln(..)/m+ γ2

4m

Martingales ...
...
...



Summary: PAC-Bayesian Analysis

A Natural and General Way to do Model Order Selection

I Generality
I Supervised, Unsupervised, Reinforcement, ..., Learning

I Modularity
I Any concentration inequality (Hoeffding/Bernstein/...)

with any prior (Gaussian/Laplace/combinatorial/...)
I For factorisable distributions (graphical models) KL factorizes

I PAC ...
I Strict generalization guarantees

I ... and Bayesian
I Easy way to incorporate prior knowledge

both structural and distribution-dependent

I Bridges frequentist and Bayesian approaches

I Tight bounds

I Drives good algorithms
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