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Abstract
By measuring the anisotropic self-diffusion rates of water, Diffusion Weighted Magnetic Reso-
nance Imaging (DW-MRI) provides a unique noninvasive probe of fibrous tissue. In particular, it
has been explored widely for imaging nerve fiber tracts in the human brain. Geometric features
provide a quick visual overview of the complex datasets that arise from DW-MRI. At the same
time, they build a bridge towards quantitative analysis, by extracting explicit representations of
structures in the data that are relevant to specific research questions. Therefore, features in DW-
MRI data are an active research topic not only within scientific visualization, but have received
considerable interest from the medical image analysis, neuroimaging, and computer vision com-
munities. It is the goal of this paper to survey contributions from all these fields, concentrating
on streamline clustering, edge detection and segmentation, topological methods, and extraction
of anisotropy creases. We point out interrelations between these topics and make suggestions for
future research.
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1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) offers a unique way to investigate
the directionally dependent heat motion of water molecules in biological tissue [68]. In nerve
fiber bundles or muscles, the diffusion tensor (DT-MRI) model estimates a single principal
fiber direction [9]. High angular resolution diffusion imaging (HARDI) allows for even more
complex models of apparent diffusion coefficients [90], spin displacement probabilities [122],
or fiber densities [118]. Information acquired by DW-MRI is being used, among others,
for studying nerve-related disease [48] and normal brain function [104], and for improved
planning of brain surgery [134].

Generating visual representations of DW-MRI data has been an active topic in the
scientific visualization community in the past decade. Similar to research in flow visualization
[97], existing work in this field can be classified as follows:
1. Direct methods use simple rules to map data to visual attributes, for example by color

mapping [92] or volume rendering [63].
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Figure 1 Feature extraction introduces an explicit layer of abstraction that reduces DW-MRI
data to the relevant information.

2. Image-based techniques generate a texture that conveys certain aspects of the data, for
example by variants of line integral convolution [49, 141], reaction-diffusion textures [63],
or brush strokes [67].

3. Geometry-based techniques generate three-dimensional objects that correspond directly
to attributes of the data, like streamlines [82, 139] or glyphs [58].

4. Feature-based visualization involves an explicit layer of abstraction between the data
itself and its visualization (cf. Figure 1, from [105]), and will be the topic of our paper.
Feature definitions meet the requirements of specific research questions, and aim to
extract non-local structures from the data.

Several book chapters survey DW-MRI visualization in general [98, 123, 140], but they
neither focus on feature-based techniques, nor do they reflect the rapid progress that has
been made in the last few years. Therefore, it is the goal of our paper to present a panoramic
view of the diverse literature on features in DW-MRI data, to include work that has been
published outside the visualization community, and to identify directions of future research.
We will assume that the reader is familiar with basic concepts of diffusion-weighted data
acquisition, preprocessing, modeling, and derived scalar quantities like fractional anisotropy,
which are explained in excellent existing surveys [8, 132, 2].

The material has been organized as follows: Section 2 presents features that are based
on clustered streamlines. Section 3 reviews algorithms that segment white or gray matter
based on edges or uniform regions in DW-MRI data. Section 4 concentrates on topological
methods, while Sections 5 treats crease extraction. Finally, Section 6 concludes the paper.

2 Streamline Clustering and Visualization of Fiber Bundles

Fiber tracking aims at reconstructing the trajectories of major nerve fiber bundles. In the
context of visualization, streamline tractography, which integrates lines tangential to inferred
fiber directions, represents the most widely used type of fiber tracking [30, 23, 82, 10]. With
the diffusion tensor model, it amounts to streamline integration in the principal eigenvector
field. Even though a successful streamline visualization requires suitable termination criteria
[83] and strategies for seeding, culling, and rendering [139], these problems are outside the
scope of our survey, since they do not pertain to feature extraction in the strict sense.

Streamlines visually convey the inferred fiber bundle trajectories in an intuitive manner.
However, even though they are frequently called “fibers”, they do not have clear anatomical
correlates: Single axons are far below the imaging resolution, and the full fiber bundles
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Figure 2 The mean streamline distance dµ takes an average of the arrow lengths in (a) and (b).
The Hausdorff distance dH only considers the single longest arrow, shown in (c).

typically comprise more than a single streamline. It is the goal of fiber clustering to group
individual streamlines into anatomically more meaningful units, which are referred to as fiber
bundles. Given a whole brain tractography, clustering is required to make the sheer amount
of streamlines more manageable, and it facilitates more abstract and concise visualizations.

Streamline clustering involves at least three major decisions: Defining a measure of
similarity between streamlines, chosing a clustering algorithm, and selecting the desired
number of clusters. When multiple datasets are considered simultaneously, an additional
challenge is to identify correspondences between subjects.

2.1 Distance Measures for Clustering
Some clustering algorithms require a distance measure on pairs of streamlines, while others
rely on a similarity measure. In practice, there are various ways to obtain a distance from a
similarity and vice versa; a common one is to map high to low values via a Gaussian kernel
[16, 86]. For clarity, this section will present all approaches in terms of distance measures.

Most distance measures can be defined in terms of two streamlines Fi and Fj , which are
given as uniformly sampled polygonal curves with vertices pk and pl, respectively. The most
frequent choice is the mean Euclidean distance dµ from all points of one streamline to the
other curve, averaged over both lines [116, 26, 80] (cf. Figure 2 (a) and (b)):

dµ(Fi, Fj) = 1
2
(
d̃µ(Fi, Fj) + d̃µ(Fj , Fi)

)
with d̃µ(Fi, Fj) = meanpk∈Fi minpl∈Fj ‖pk − pl‖ (1)

For matching streamlines from both hemispheres, O’Donnell and Westin [86] use a variant
of dµ, in which they take the minimum of d̃µ(Fi, Fj) and d̃µ(Fj , Fi) instead of the average.

Occasionally, the Hausdorff distance dH has been considered. It is a “worst case distance”,
based on the single point from either line which maximizes the distance to the other streamline
(cf. Figure 2 (c)) [26, 80]:

dH(Fi, Fj) = max
(
d̃H(Fi, Fj), d̃H(Fj , Fi)

)
with d̃H(Fi, Fj) = maxpk∈Fi minpl∈Fj ‖pk − pl‖ (2)

Zhang et al. [138] take the average over points whose distance to the other streamline
is larger than some threshold. This measure is in-between dµ and dH , in the sense that it
emphasizes diverging parts of the curves more than dµ, but less strongly than dH . Some
authors have also tried the minimum distance between the streamlines as a measure for
clustering, but found that it produces inadequate results, since anatomically distinct tracts
frequently pass each other at short distances [26, 80].
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In a naive implementation, clustering with the distance measures above involves a
comparison of all pairs of points for all pairs of streamlines. Given the length and number
of streamlines in full-brain tractography, this quickly becomes prohibitively inefficient. The
following strategies have been proposed to reduce the computational burden:

Ding et al. [33] only consider neighboring pairs of streamlines, and match subsequent
vertices on both lines, rather than looking for closest points. However, this requires
correct alignment of streamlines, and their algorithm to compute it only works if all fibers
were seeded along a common plane.
Brun et al. [17] define a simpler distance measure, which is based on the streamline
endpoints. Moberts et al. [80] find that empirically, this measure produces similar results
as the Hausdorff distance, which might indicate that for many pairs of streamlines, the
maximum distance occurs near their endpoints.
In a follow-up, Brun et al. [16] generate a descriptor for each streamline by treating its
vertices as a point cloud and computing its mean and the square root of its covariance
matrix. Then, streamlines are compared by taking the Euclidean distance of the resulting
nine-dimensional feature vectors.
Xia et al. [135] reduce the problem size by initializing the clustering based on a gray
matter atlas. Similarly, Maddah et al. [73] only compute distances from streamlines to
cluster representatives, which they initialize manually. An additional speedup is obtained
by pre-computing a distance transformation of each representative.
O’Donnell and Westin [86] use an approximative clustering algorithm that only requires
them to compute all pairwise distances within a representative subset of all streamlines.
Moreover, they evaluate Equation (1) on subsampled streamline representations.

Even though some convergence towards the use of dµ has been observed [86], it is not
entirely settled which measure is the most appropriate, or if different ones should be used
depending on the clustering algorithm. Moberts et al. [80] quantify how closely various
algorithms and distance measures reproduce a ground truth clustering. In their results, the
mean distance dµ consistently performs better than the Hausdorff distance dH . However, to
our knowledge, there is no systematic comparison available that includes the “in-between”
measure by Zhang et al. [138] or the computationally attractive feature-based measure by
Brun et al. [16].

Finally, Tsai et al. [121] argue that in order to correctly capture the manifolds on
which streamlines lie, the definition of pairwise distances should also take into account the
trajectories of all other streamlines. They achieve this by constructing and intersecting
minimum spanning trees rooted at each streamline. However, a comparison to traditional
distance measures has only been provided on one synthetic example.

2.2 Algorithms for Streamline Clustering
The simplest methods for streamline clustering use the nearest neighbor algorithm or some
variant of it [33]. Starting with one cluster per streamline, clusters are merged iteratively if
at least one pair of streamlines is closer than some distance threshold θ [26, 80, 138]. Since
nearest neighbor clustering produces a hierarchy of refined clusters for decreasing values of θ,
it is also called “agglomerative hierarchical clustering” [136].

In nearest neighbor clustering, a single pair of similar streamlines can cause a merge
of two otherwise very different clusters. Zhang et al. [138] argue that this helps to cluster
sheetlike structures like the corpus callosum. On the other hand, noise in the data can
generate spurious streamlines that act as a bridge between anatomically separate clusters
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and can cause a false merge. Moberts et al. [80] have experimented with some alternative
criteria for cluster merging, but none of them improved the results.

Shimony et al. [116] and Maddah et al. [73] have considered fuzzy clustering algorithms,
which quantify the certainty to which a streamline belongs to a bundle. These probabilities
were both visualized and used in a statistical tract-based analysis [73]. However, to our
knowledge, the practical merit over a quantitative analysis that is based on hard clusters
[87] has not been studied systematically.

Brun et al. [16] treat the clustering as a graph cut problem. Representing each streamline
by a node in a similarity graph, they search for a bipartition that minimizes the summed
similarities of the streamlines that are separated, with a normalization that avoids overly
small clusters [115]. Like the nearest neighbor methods, this is a hierarchical technique, but
it starts with all streamlines in a single cluster, recursively subdividing it until a threshold
or a pre-specified number of clusters is reached. The algorithm has also been employed by
Enders et al. [36] and Schultz et al. [111]. O’Donnell and Westin [86] use a variant of it, in
which they find k-way graph cuts by k-means clustering in a spectral feature space.

The greedy local approaches used in [26, 80, 138] and the global methods in [116, 16, 86, 73]
represent two fundamentally different strategies. Generally, local techniques are simpler to
understand and to implement, while global ones are more robust against outliers. To our
knowledge, no direct experimental comparison is available. However, only one of the global
algorithms [86] has been refined to a point at which the reproducibility of its results over
subjects and operators has been quantified [124].

2.3 Clustering Parameters

The most important parameter in clustering is the number of desired clusters. In some cases,
this parameter is not explicit. Rather, the number of clusters may follow from a desired
homogeneity within clusters or a minimum distance between them. In such cases, creating
a plot of the number of clusters as a function of the underlying algorithmic parameter can
help the user to find the most appropriate value [26].

In theory, such a plot could also be used to try and detect a “natural” clustering implied
by the data: Ideally, a clustering that agrees well with the data should remain stable over
a considerable range of parameters. To our knowledge, O’Donnell and Westin [86] made
the only published attempt to identify the cluster number inherent in the data: Based on a
plot of the sum of maximum point-to-centroid distances over the number of clusters, they
motivate their choice of 200 clusters for a full-brain tractography.

Moberts et al. [80] use a scoring function to find good parameter values automatically.
However, it is defined with respect to a given ground truth clustering, and the authors do not
study how well the identified parameters carry over to different datasets for which ground
truth may not be known.

At the current state of the art, high-quality streamline clusterings cannot be obtained
fully automatically. Therefore, O’Donnell and Westin [86] deliberately generate an overseg-
mentation, and allow the user to merge clusters manually. Alternatively, Zhang et al. [138]
create a user interface for an interactive exploration of the parameter space. As long as
streamline clustering requires considerable intervention by an expert, it competes against
methods that facilitate a reproducible manual selection of fiber bundles [114, 15, 1]. The
frameworks by Chen et al. [21] and Jianu et al. [50] combine both approaches by integrating
tools for manual selection in linked two- and three-dimensional views with algorithms for
automated clustering.
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2.4 Clustering of Populations
A preliminary for cross-subject comparison is spatial alignment of the individual datasets.
Multi-subject image registration is a field of its own with a rich body of literature [81]. The
specific methods that have been used in the context of streamline clustering include block
matching (in [74]), congealing (in [86]), and FLIRT (in [138]). Once alignment has been
achieved, there are three general strategies to find corresponding clusters between subjects:
Joint clustering, explicit matching, and atlas-based.

O’Donnell and Westin [86] take the union of the streamlines from all coregistered datasets
and cluster them jointly. This is a conceptually very simple extension of single-subject
clustering, and it automatically yields cross-subject correspondences. However, it increases the
problem size dramatically. Therefore, O’Donnell and Westin employ several approximations,
the most important of them being the Nystrom method for finding normalized graph cuts.

After combining the streamlines from different subjects, tracts are no longer separated
clearly enough to apply the nearest neighbor algorithm. Therefore, Zhang et al. [138] perform
clustering on individual subjects and determine correspondences explicitly: Each cluster is
described by a nine-dimensional feature vector that captures the mean fiber start-, mid- and
endpoints, and correspondences are found based on feature similarity.

The final option is to store descriptors of known fiber bundles in an atlas. Then,
streamlines from new subjects are simply assigned to one of the predefined clusters. The
resulting labeling is not only consistent over subjects, but also identifies specific tracts
automatically. To transfer labels from the atlas to new subjects, Maddah et al. [74] use
a B-Spline matching to find the most similar streamline, while O’Donnell and Westin [86]
represent fibers as points in a high-dimensional feature space, and assign new streamlines to
the closest cluster centroid.

2.5 Representing and Rendering Streamline Clusters
Initially, a clustered fiber bundle is represented as a set of sampled streamlines. Mean
or medial lines are a more global representation, and can be constructed in various ways
[33, 25, 36, 73, 137, 22]. They have been used to establish correspondences between individual
fibers, to act as projection targets for diffusion quantities, to extract geometrical measures
like curvature and torsion, or to support visualization. Instead of generating a new line to
represent the cluster, O’Donnell et al. [87] select the “most typical” existing one.

For applications in surgical planning, it is important to visualize not just the center, but
the full spatial extent of a bundle. Enders et al. [36] use a convex hull algorithm to generate
envelopes that wrap a variable percentage of streamlines within the bundle. To give an
impression of bundle cores and their full extent, surfaces for different parameter choices are
overlaid. To handle more complex bundle geometry, such as branchings, different variants
of the alpha shape algorithm have been employed by Merhof et al. [78] and by Chen et al.
[22]. Based on a statistical model of the bundle, Maddah et al. [73] generate renderings
that depict an interval of three standard deviations around the mean fiber, but they do not
provide details on their algorithm for surface construction.

Yushkevich et al. [137] and Schultz et al. [107] have estimated the extent of a bundle by
rasterizing the streamlines to a voxel grid and applying a small amount of Gaussian blur on
the resulting density volume. Merhof et al. [79] have demonstrated that isosurfaces of such
volumes (Figure 3 (a)) provide a simple alternative way to obtain fiber hulls.

In neuroscience, streamline clustering is often used as a preprocess for a tract-based
statistical analysis of diffusion measures like mean diffusivity or fractional anisotropy. This
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(a) (b)

Figure 3 Hulls of fiber bundles (a) have been considered for surgical applications. Correspondences
between streamlines (shown by same hue in (b)) are needed for streamline-based spatial statistics.

requires correspondences between points on the individual streamlines or, alternatively, a
common shape-based coordinate system. In order to establish such correspondences, Ding et
al. [33] match the intersection points of individual streamlines and a plane orthogonal to
the medial line. Corouge et al. [24] define a cutting plane through the bundle manually, and
match points with the same arc length from the resulting intersection points. This strategy
was used to create Figure 3 (b). Maddah et al. [73] create a Voronoi diagram of the mean
fiber vertices and match streamline vertices that fall into the same Voronoi cell. After a
quantitative comparison to these prior methods, O’Donnell et al. [87] decide to compute an
optimal point matching using a variant of the Hungarian algorithm [65].

Intra-cluster variations in streamline shape are modeled by Corouge et al. [25], who
perform a Procrustes analysis to achieve curve alignment, followed by a Principal Component
Analysis of vertex coordinates. Alternatively, Batchelor et al. [11] explore a variety of
quantitative measures of curve shape that do not require point-to-point registration.

3 Edge Detection and Segmentation

White matter segmentation tries to localize fiber bundles without performing streamline
tractography, typically by grouping together regions with similar local diffusion properties,
or by growing regions until a boundary is reached. It is also possible to segment some gray
matter structures from DW-MRI data. This frequently involves probabilistic tractography
as a pre-process.

3.1 Distance Measures for Segmentation
In order to identify voxels with similar diffusion properties, the first step is to choose a
distance measure d(T(1),T(2)) for diffusion tensors T. Since symmetric 3× 3 tensors form a
six-dimensional vector space, it is possible to simply use the Euclidean metric dE on that
space [133, 38, 100]. In terms of tensor components tij , it is given as

dE(T(1),T(2)) =

√√√√ 3∑
i=1

3∑
j=1

(
t
(1)
ij − t

(2)
ij

)2
(3)

Alternatively, the scalar product 〈T(1),T(2)〉 that corresponds to the Euclidean space (i.e.,
dE(T(1),T(2)) =

√
〈T(1) −T(2),T(1) −T(2)〉) can serve as a measure of tensor similarity. It

is given in terms of tensor components tij or, equivalently, in terms of eigenvalues λi and
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Figure 4 The choice of metric or distance measure changes the definition of the mean tensor.

eigenvectors ei:

〈T(1),T(2)〉 =
3∑
i=1

3∑
j=1

t
(1)
ij t

(2)
ij =

3∑
i=1

3∑
j=1

λ
(1)
i λ

(2)
j 〈e

(1)
i , e(2)

j 〉
2 (4)

Occasionally, these two definitions have been presented as distinct measures that happen
to behave similarly in practice [3, 95]. Expressing the scalar product as 〈T(1),T(2)〉 =
tr(T(1)TT(2)) (where T(1)T is the transpose of T(1) and tr(·) denotes matrix trace) and
writing T in terms of its spectral decomposition (T = EΛET) allows us to verify that they
are, in fact, mathematically equivalent [55].

Based on the interpretation of diffusion tensors as the covariance matrix of a multivariate
Gaussian distribution, Wang and Vemuri [126] propose to treat diffusion tensor fields as fields
of Gaussian probability distribution functions (PDFs), and to consider the square root of the
J-divergence, an information theoretical distance measure between PDFs. It is given as

dJ(T(1),T(2)) = 1
2

√
tr
(
T(1)−1T(2) + T(2)−1T(1)

)
− 6 (5)

where T(1)−1 denotes the inverse of T(1). Unlike dE , dJ is not a metric, since it does not
fulfill the triangle inequality. A proper Riemannian metric dR on the set of positive definite
tensors that shares some of the properties of dJ is presented by Batchelor et al. [12]:

dR(T(1),T(2)) =
√

tr
(
log2(T(1)−1/2T(2)T(1)−1/2)

)
(6)

where the matrix logarithm log(·) is evaluated on the eigenvalues. Lenglet et al. adapt the
idea of interpreting diffusion tensors via the corresponding Gaussian PDFs and initially
employ dJ [69]. In a follow-up work [70], they use dR and show that it can be derived from
the Fisher information matrix.

The choice of metric can have significant impact on the computational efficiency of a
segmentation model. In part, this is due to the fact that Equations (5) and (6) involve
operations like matrix inverse and logarithm. In addition, many segmentation methods
repeatedly compute tensor means, and the definition of a mean µ changes with the chosen
metric (cf. Figure 4). When using the Euclidean norm dE , the mean can be taken component-
wise, but its computation becomes more complex for dJ , and when more than two tensors
are involved, it does not even have a closed form solution in case of dR [12, 70]. In order to
reduce this computational burden, Arsigny et al. [5] propose the Log-Euclidean distance dL;
it corresponds to applying dE after taking the matrix logarithm:

dL(T(1),T(2)) = dE(log(T(1)), log(T(2))) (7)

For many practical purposes, dL has similar properties as dJ and dR: Weldeselassie and
Hamarneh [130] find that within their segmentation framework, dL to dJ produce comparable
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results. From a theoretical standpoint, dJ and dR are both affine invariant: For any invertible
matrix A, d{J,R}(T(1),T(2)) = d{J,R}(AT(1)AT,AT(2)AT). dL is not affine invariant, but
retains, among others, invariance under rotation and scaling [5]. Additionally, dR and dL are
invariant under inversion, d{R,L}(T(1),T(2)) = d{R,L}(T(1)−1,T(2)−1).

Which of these invariances are actually desirable for diffusion tensor processing is a topic
of current scientific debate. Affine invariant and Log-Euclidean metrics put positive definite
tensors at an infinite distance from tensors with non-positive eigenvalues. Arsigny et al. [5]
argue that this is beneficial, since diffusivities should not be negative. When interpolating
tensors with the Euclidean metric, the determinant of the interpolant can become larger
than the determinants of the original tensors. Arsigny et al. call this effect “tensor swelling”
and consider it a major problem, which is avoided by the use of their Log-Euclidean metric.

On the other hand, Pasternak et al. [94] have pointed out that while diffusivity as a
physical quantity is indeed non-negative, noise and artifacts can still cause measurements of
diffusivity to become negative. When performing statistical analysis on such measurements,
replacing individual negative values with zero or a small positive value will bias the resulting
estimates. More generally, they consider affine invariance to be undesirable, since diffusivity
has a meaningful scale, so it makes sense to measure absolute differences (as done by dE),
whereas affine invariant metrics effectively compute ratios. Finally, they argue that unless
very specific assumptions can be made on the variability underlying the data, it is more
appropriate to preserve tensor trace during interpolation (again done by dE) than to preserve
the determinant (as done by dL).

Other frameworks for tensor interpolation and distance measurement have monotonically
interpolated eigenvalues [76] or invariants such as fractional anisotropy [60]. However, they
do not lead to closed-form distance measures, and have so far not been used for segmentation.

There is evidence that for DT-MRI segmentation, no unique “correct” or “best” distance
measure exists. In [53] and [55], Jonasson et al. segment two different anatomical structures
and point out that different distance measures gave the best results in these two cases.
Similarly, Ziyan et al. [145] find that when segmenting the thalamic nuclei, concentrating on
differences in principal eigenvector directions produces better results than using the full tensor
information. Schultz et al. [106] demonstrate that, starting from the same initialization,
an edge-based level set method will either segment the ventricle or the corpus callosum,
depending on the chosen distance measure. Consequently, they propose a flexible framework
in which physically meaningful user-defined weights allow the expert to customize the distance
measure for specific segmentation problems.

3.2 Edges in Diffusion Tensor Fields
Edges are rapid changes in the data and often indicate meaningful structural boundaries. In
grayscale images, edges correspond to variations in intensity, and the gradient vector indicates
their direction and magnitude. In DT-MRI fields, they have a more complex structure:
Gradients are third-order tensors, and the six degrees of freedom in second-order tensors lead
to different types of edges, related to changes in trace, shape, or orientation (cf. Figure 5).

The first edge maps of DT-MRI data were created by Pajevic et al. [91], who distinguish
two types of edges by either considering gradients in the full tensor field or only in its deviatoric
(trace-free) part. Alternatively, O’Donnell et al. [85] employ normalized convolution to reduce
the effect of tensor trace on the overall edge strength.

Kindlmann et al. [59] have presented a framework which decomposes the tensor field
gradient into six physically meaningful edge types that cover all degrees of freedom present
in the data. This is achieved by considering the gradients of tensor invariants, i.e., changes in
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(a) Changes in trace outline the
brain tissue as a whole.

(b) Changes in tensor shape
delineate boundaries of white

matter tracts.

(c) Changes in orientation
indicate interfaces between

fiber bundles.

Figure 5 Different types of edges exist in diffusion tensor fields. On the top, variations in specific
tensor attributes are illustrated. On the bottom, corresponding edge maps are overlaid on slices in
standard XYZ-RGB color coding.

tensor value that are associated with changes in scalar measures such as trace or fractional
anisotropy. Three scalar measures are used that parameterize the full space of tensor shapes
and whose gradients are orthogonal [37]. In order to capture changes in tensor orientation,
the framework is supplemented with rotation tangents, describing the effect of infinitesimal
rotations around the eigenvectors. Taken together, normalized invariant gradients and
rotation tangents form a local basis of the space of symmetric 3× 3 matrices, and different
edge types are distinguished by expressing the tensor field gradient in that basis. In a
follow-up work, Schultz and Seidel [109] clarified the relation between invariant gradients
and perturbation theory and demonstrate how to find analytical edge maps of anisotropy
measures that are defined in terms of sorted eigenvalues, such as cl, cp, and cs [131].

Edges are low-level features; by themselves, they have not found extensive use for
visualization or quantitative analysis. However, they provide guidance for some of the
segmentation approaches that will be discussed in the remainder of this section [38, 106, 110].
They are also used to define higher-level features which do not imply a partitioning of the
field, like interfaces between adjacent tracts [59]. Crease surfaces can be used to obtain
explicit geometric representations of such features, and will be covered in Section 5.

3.3 Fiber Tract Segmentation
Contributions on white matter segmentation can be compared along various axes. In this
section, we will consider segmentation goals and discuss different segmentation strategies
and region models. Most existing approaches are based on the diffusion tensor model, but
some [41, 77, 54, 127, 102, 32] have used HARDI data.
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Initial works on diffusion MRI segmentation have aimed at delineating the white matter
as a whole [144, 38]. However, such segmentations are already afforded by simpler acquisition
schemes, such as T1-weighted imaging [27]. Segmentation tasks that explicitly rely on the
contrast provided by diffusion MRI include specific structures within the white matter. The
corpus callosum is the largest white matter structure in the human brain, connecting the
two hemispheres, and has been a very common target of segmentation efforts [100, 70, 106,
54, 29, 130, 127, 102, 32]. Some authors have also aimed at segmenting the cortico-spinal
tract [53, 41, 54, 102, 32] and several smaller structures, including (parts of) the cingulum
bundles [41, 6, 127], the inferior long association bundles [53] and tracts in the brainstem
[41]. Moreover, rat brain and spinal cord [126, 77, 7] as well as a phantom from excised rat
spinal cords [18, 70, 32] have been the objects of investigation.

Level set methods [113, 88] have been the most frequent framework for DW-MRI segmen-
tation. They represent the segmented boundary as the zero isocontour of a scalar field and
evolve it under some partial differential equation. Zhukov et al. [144] present the earliest
level set method for DT-MRI segmentation, but only make use of two derived scalar fields,
which limits their method to finding the ventricles and the white matter as a whole. Most
later works exploit the full tensor information: Feddern et al. [38, 39] and Schultz et al.
[106] use edge-based active contours [19, 57], while most others rely on region models. For
example, Wang and Vemuri [125] use a piecewise constant model [20]; Rousson et al. [100]
employ multivariate Gaussian modeling of the regions, similar to [99].

As alternatives to level sets, Markov random fields [77, 6, 7] and graph-based methods
[130, 127] have been used. Markov random fields [71] are based on a statistical image
model. Given the observed image and optional priors, they estimate model parameters that
determine a per-region distribution of image values and the per-voxel region membership
in a Bayesian framework. Graph-based methods [129, 66] have already been mentioned in
Section 2.2: They treat each voxel as a node in a graph, and assign edge weights based
on similarity in diffusion properties and spatial proximity. Fiber tract segmentation was
also approached with traditional visualization tools by Schultz et al. [110]: They extract
isosurfaces that outline the white matter core and use a watershed-type mesh segmentation
to identify individual bundles, combining edge- with region-based information.

The simplest models used for segmentation assume a constant diffusion tensor per region,
or a Gaussian distribution of tensors. In the presence of bending fibers, such assumptions
are problematic, since the mean tensor tends to become isotropic and the model can lose its
discriminative power. This problem has been addressed in the following ways: Wang and
Vemuri [126] replace their original piecewise constant by a piecewise smooth model [84]. De
Luis-García and Alberola-López [29] employ a mixture of Gaussians. Finally, Awate et al. [6]
present a fuzzy segmentation framework that is based on nonparametric region models.

Methodically, “fast-marching” [93] or “flow-based” [18] tractography lies in between
streamline-based tractography and white matter segmentation. It starts with a level set
representation of a small sphere, initialized at some user-specified seed. The initial surface is
propagated in normal direction with a speed that depends on the estimated likelihood of
a fiber connection in the given direction. Each voxel records the time at which it was first
reached by the surface; a gradient descent in the resulting time-of-arrival map connects any
point in the domain to the original seed, and assigns a likelihood to those paths, making a
connection to probabilistic tractography.

On the other hand, Jonasson et al. [53] define propagation speed based on the local
similarity of diffusion properties, stop surface evolution when the speed drops below some
threshold, and interpret the final surface as the outline of a fiber bundle, which makes a
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connection to traditional edge-based segmentation schemes. Conceptually, this strategy
corresponds to region growing with curvature-based regularization. Savadjiev et al. [102] use
a simpler, unregularized region growing scheme, but derive a similarity measure from the
differential geometry of local streamline neighborhoods rather than diffusion properties.

For segmentation of HARDI data, Jonasson et al. [54] transform three-dimensional fields
of orientation distribution functions (ODFs) to a five-dimensional scalar field, which they
segment with a hypersurface. Hagmann et al. [41] rely on the same five-dimensional position-
orientation space, but employ a Markov random field rather than a level set method for the
segmentation. Similarly, McGraw et al. [77] use a hidden Markov measure field, but model
the ODFs as mixtures of von Mises-Fisher distributions. Finally, Descoteaux and Deriche
[32] model the ODFs with spherical harmonics and apply the single-Gaussian region model
by Rousson et al. [100] to the resulting coefficients.

3.4 Gray Matter Segmentation
Finding the major nuclei of the thalamus has been the first example of gray matter segmen-
tation based on DW-MRI. The reason for this is that the thalamus contains homogeneously
oriented axons (“striations”) that provide contrast in diffusion imaging.

Wiegell et al. [133] combine diffusion tensor dissimilarity and spatial distance to cluster
voxels inside of the thalamus via a k-means algorithm. To obtain improved results, other
authors employed normalized graph cuts [145], level sets [55], and the mean shift algorithm [34].
To avoid having to determine correspondences explicitly when comparing the segmentation
results on different subjects, Ziyan and Westin [146] segment all datasets jointly.

A conceptually different approach to segmenting the thalamus goes back to Behrens et al.
[14], who map manually defined cortex areas to the thalamus via a probabilistic tracking
of the cortico-thalamic connections. In a follow-up, Johansen-Berg et al. [52] validate this
method by comparing the cortex areas that are reached by a tractography from the centers
of thalamic activations as determined by functional MRI.

Johansen-Berg et al. [51] and Anwander et al. [4] demonstrate that clustering results from
probabilistic tractography allows one to segment certain parts of the cortex into functionally
distinct regions. This observation is exploited by Schultz et al. [111] in their definition of
topological features in diffusion MRI data, which will be detailed in the next section.

4 Topological Methods

In the feature-based visualization of flow fields, topological methods are a well-established ap-
proach. Introduced to visualization by Helman and Hesselink [44], they have been researched
widely since then [119, 103, 128]. Topological methods extract qualitative structures from
the data by considering the asymptotic behavior of streamlines, effectively partitioning the
domain into regions in which all streamlines start in the same source and end in the same
sink. The interfaces between these regions constitute the topological skeleton, a concise
description of the data which is invariant over all structurally equivalent fields.

The eigenvector fields derived from a symmetric second-order tensor field differ from
proper vector fields in the fact that they lack orientation. Delmarcelle and Hesselink [31]
have demonstrated how the basic definitions of vector field topology can be transferred to
eigenvectors. In a follow-up work, Hesselink et al. [45] also considered three-dimensional
tensor fields. Points at which two or more eigenvalues coincide are the fundamental features
in tensor topology, and later works [28, 142] have clarified the fact that in generic 3D data,
these “degenerate” loci form stable lines.
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Even though it had previously been proposed to apply tensor topology to diffusion
tensor fields [143], Schultz et al. [111] were the first to publish results on this type of data.
Experimenting with the algorithm by Zheng et al. [142], they found that the utility of tensor
topology on data from brain diffusion MRI is limited by the facts that the features do
not have a clear correlation to anatomical structures, and that they are very sensitive to
measurement noise and the choice of interpolation. This observation is partly explained by
the fact that standard single fiber models predict diffusion tensors with two equal eigenvalues.
On idealized diffusion tensor fields, this imposes a constraint which violates the genericity
assumption on which tensor topology is founded.

In order to transfer the basic idea of topological visualization to diffusion MRI, Schultz et
al. [111] instead consider the asymptotic behavior of a probabilistic fiber tracking algorithm
and identify fuzzy subvolumes which are likely to connect functionally distinct regions of
the brain. By rendering semi-transparent confidence hulls around the core structures, the
uncertainty in the feature boundaries is conveyed visually.

Inspired by Lagrangian coherent structures [42], Hlawitschka et al. [46] present a framework
that visually highlights boundaries along which the streamlines from nearby seeds diverge
notably after a fixed and finite integration time. Even though they are not the result of an
asymptotic analysis, such boundaries are similar to the topological skeleton in that they
separate regions of different qualitative streamline behavior. Finally, it has been pointed
out by Salzbrunn and Scheuermann [101] that streamline clustering (cf. Section 2) can be
considered as an alternative generalization of vector field topology, in particular when the
similarity measure is based on the endpoints, as in [17].

5 Anisotropy Crease Surfaces and Lines

In typical scalar fields, local maxima and minima form isolated points. Creases generalize
these extrema to higher-dimensional structures, like extremal lines and surfaces. Ridges
generalize local maxima, while valleys correspond to local minima. Even though the most
adequate crease definition is not undisputed [64], the so-called “height crease definition” [43]
has become a well-researched tool to find medial axes in grayscale images [96] and has been
extended towards applications as diverse as medical image analysis, molecular modeling, and
analysis of fluid flows [35].

In the context of DW-MRI, ridge surfaces and lines were used in order to obtain reliable
spatial statistics in group studies. To localize variations in fractional anisotropy (FA) between
two groups (typically, patients vs. healthy controls), many previous studies would register
individual datasets to a volumetric template and subsequently perform a local statistical
analysis, effectively comparing anisotropy values in individual voxels over all subjects. The
reliability of such voxel-based methods is limited by inevitable inaccuracies in registration,
varying degrees of partial voluming, and heuristic choices of the smoothing kernel. To
ameliorate these problems, Smith et al. [117] extract ridges in a group-averaged FA map. In
each individual dataset, locally maximal values of FA are then projected onto the common
ridge and statistical tests are done on the ridge manifold. This projection compensates slight
misalignments and does not involve any smoothing of the modeled data, leading to more
objective and valid results.

The algorithm by Smith et al. [117] employs a thinning technique to produce a binary
mask, indicating which voxels are part of the ridge. In contrast, Kindlmann et al. [62] use the
height crease definition along with analytical derivatives of FA to extract a high-resolution
triangle mesh representation of ridge and valley surfaces, which they name “anisotropy
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Figure 6 A valley surface in fractional anisotropy (gray) separates the right cingulum bundle
(Cing) from the corpus callosum (CC).

creases” (cf. Figure 6). In a follow-up to this work, Schultz et al. [112] present an improved
algorithm that captures the surface boundaries more precisely and is approximately one
order of magnitude faster on typical DT-MRI data. Some white matter structures, including
parts of the cingulum bundles, are tube-like rather than sheet-like, so their cores are better
described by lines than by surfaces. In this respect, the algorithm to extract FA ridge lines
presented by Tricoche et al. [120] complements the original method from [62].

Intuitively, creases are similar to topological methods as surveyed in Section 4 in that they
reduce the dataset to a structural skeleton. More formally, Tricoche et al. [120] point out
that degenerate lines in tensor topology are a subset of the crease lines in a tensor invariant
called mode, which captures the transition between linear and planar anisotropy. In this
sense, anisotropy creases remedy the shortcomings of tensor topology in DT-MRI data by
replacing mode with FA, an invariant which is more widely used for anatomical analysis and
less affected by noise. A second link between both methods has been found by Schultz et al.
[112]. In their theoretical analysis of crease surface topology, they observe that degenerate
lines in the Hessians of the considered anisotropy measure (rather than in the diffusion tensor
field itself) form one type of crease surface boundary, and they employ the gradient descent
proposed by Zheng et al. [142] to localize it.

Since measurement noise and fine-scale structures induce spurious local extrema, ex-
traction of stable and expressive creases typically requires some amount of filtering. While
Smith et al. [117] process group mean images which are smoothed implicitly by the involved
averaging, Kindlmann et al. [62] work on individual datasets and thus have to perform
explicit filtering. However, the adequate smoothing extent is not known a priori and can
even vary spatially, because anatomical structures differ in size. In computer vision, this
problem has been addressed by treating the amount of smoothing as a free parameter, and
analyzing the family of images generated by all possible values along this additional “scale”
axis [72]. A particle-based approach to extract creases of variable dimensionality from scale
space has been presented by Kindlmann et al. [61].

Extracting anisotropy creases and finding medial structures from fiber bundles (Section 2.5)
can be considered as competing approaches to defining a white matter skeleton. This becomes
especially clear in a work by Yushkevich et al. [137]: By fitting medial surface models to fiber
bundles, they generate surfaces that lend themselves to a similar local statistical analysis as
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it was done by Smith et al. [117]. Ultimately, the choice between both options might depend
on the exact goals of a study: An analysis based on streamline clusters is more specific to
individual tracts, but relies on a correct clustering (in [137], this step is performed by an
expert). Anisotropy creases are less specific, but require less manual intervention and make
it easier to cover the whole white matter.

In the visualization community, crease manifolds were not only treated as a tool for
quantitative analysis: Schultz et al. [112] found that DT-MRI streamsurfaces, which had
been proposed previously to illustrate regions of planar diffusion [139], are ill-defined in
typical data, and demonstrate that planarity ridge surfaces can replace them.

6 Conclusion and Future Directions

One of the challenges in the visualization of DW-MRI data is the high information density:
Diffusion tensor MRI produces symmetric second-order tensors with six degrees of freedom
per voxel, HARDI models have an even larger number of parameters. Feature extraction is
an established strategy to provide a layer of abstraction that allows for visual inspection of
such complex data, while preserving information that is relevant to a given application.

In this paper, we have summarized the state of the art in feature-based DW-MRI
visualization. Even though different communities have contributed to this field, we were able
to highlight a number of close links between the presented approaches. Most prominently, a
recurrent theme in streamline clustering (Section 2), white matter segmentation (Section 3),
and fuzzy diffusion MRI topology (Section 4) is to identify the spatial extent of anatomically
relevant fiber bundles.

DW-MRI visualization is a relatively young field. Consequently, much of the initial
work has concentrated on brainstorming new ideas, and many methods have been proposed
without a systematic comparison to the state of the art. As the field matures, one important
aspect of future research will be to clarify the relation between existing techniques in a more
formal manner. Ideally, the community should agree on quantitative benchmarks that help
to ensure that we are not only creating more, but actually better ways of analyzing DW-MRI
data. This would be greatly facilitated by a public library of datasets, along with atlases
that provide ground truth for segmentation and fiber clustering. For grayscale and color
images, such libraries exist and are actively used in the computer vision community [75].
Even though some diffusion-based white matter atlases are available on the web,1 we are not
aware of any works that have used them for validation.

When research on DW-MRI visualization was still in its infancy, flow visualization already
offered an impressive variety of feature-based techniques [97]. Consequently, many methods
for vector fields have been transferred to tensor fields and applied to DT-MRI data. With time,
this relation should become more reciprocal: For example, the uncertainty in connections
inferred from DW-MRI inspired a fuzzy topological visualization [111] before the topology of
uncertain vector fields had been considered [89]. In the relation between flow and diffusion
visualization, it is important to remember that despite the many analogies, flow and diffusion
are physically different processes. Flow is described by the Navier-Stokes equations, while
diffusion is governed by Fick’s laws [40]. One important consequence of this fact is that
flow has a direction, while the displacement probabilities of free diffusion exhibit antipodal

1 This includes an atlas available from the Laboratory of Neuro Imaging at UCLA (http://www.
loni.ucla.edu/Atlases/) and two atlases from John Hopkins University, included in the FM-
RIB Software Library provided by Oxford University (http://www.fmrib.ox.ac.uk/fsl/fslview/
atlas-descriptions.html).

http://www.loni.ucla.edu/Atlases/
http://www.loni.ucla.edu/Atlases/
http://www.fmrib.ox.ac.uk/fsl/fslview/atlas-descriptions.html
http://www.fmrib.ox.ac.uk/fsl/fslview/atlas-descriptions.html
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symmetry. The hindered diffusion processes typically met in biological tissue are even more
complex and still not fully understood [13].

With respect to the development of new methods, future challenges of the field include:
Adapt methods to HARDI. While high-angular resolution imaging has been a very active
topic in neuroimaging for several years, the visualization community has started to
investigate it only recently [47, 108]. Feature extraction is even more important for this
more complex type of data than it is for DT-MRI. For example, Jonasson et al. [56] point
out that streamline clustering becomes essential to disentangle intersecting fiber tracts
reconstructed via HARDI.
Reproducibility and feature matching over different subjects have to be achieved before
methods can be used in neuroscience or medical studies, but are considered only rarely in
the context of visualization (e.g., [80, 138]). Moreover, statistical methods and the quan-
tification of uncertainty and variance still receive too little attention in the visualization
literature.
A closely related task is to make existing methods more stable. One example of this is
the concept of scale space, which facilitates feature detection under noise and varying
scales. For 2D images, scale space is well-established in image processing and computer
vision. However, it has started to find its way into the visualization of large 3D datasets
only recently [61].
Even though we believe that there is legitimate fundamental research to be done in
visualization, we should keep an eye on the fact that the ultimate goal of our efforts
is to facilitate new insights. This can be achieved by using visualization to support
generation of new hypotheses, as part of a framework that enables quantitative analysis
and hypothesis testing, or as a debugging tool for the scientific workflow.
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