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Attempts to 
Axiomatize Clustering



Workshop Goals
Assuming we agree that theory is needed,
We wish to create a basis for a research community:

• Define/detect concrete open problems.

• Foster common language/ terminology/ classification-of-
research-directions, among us.

• Stimulate/ brain-storm.

• Increase awareness of what others are/were doing.



Clustering is one of the most widely used tool
for exploratory data analysis.

Social Sciences
Biology
Astronomy
Computer Science
.
.

All apply clustering to gain a first understanding 
of the structure of large data sets.

The Theory-Practice Gap

Yet, there exist distressingly little 
theoretical understanding of clustering



Clustering is not well defined.

There is a wide variety of different clustering tasks,
with different (often implicit) measures of quality.

The Inherent Obstacle



Common Solutions
• Consider a restricted set of distributions:

Mixtures of Gaussians [Dasgupta ‘99], [Vempala,, ’03], [Kannan et al ‘04], 
[Achlitopas, McSherry ‘05].

• Add structure:
• “Relevant Information” –

– Information Bottleneck approach [Tishby, Pereira, Bialek ‘99]
• Postulate an Objective Utility/Loss Functions –

– K  means
– Correlation Clustering [Blum, Bansal Chawla]
– Normalized Cuts [Meila and Shi]

• Information Theoretic Objective Functions:
– Bregman Divergences [Banerjee, Dhilon, Gosh, Merugu]
– Rate-distortion [Slonim, Atwal, Tkacik, Bialek]
– Description length [Cilibrasi-Vitanyi, Myllymaki] 



Common Solutions (2)
• Fitting Generative Models

– Mixture  of Gaussians
– SuperParaMagnetic Clustering [Blatt, Weiseman, Domany]
– Density Traversal Clustering [Storkey and Griffith]

• Focus on specific algorithmic paradigms
– Agglomerative techniques (e.g., single linkage) [Hartigan, Stuetzle]
– Projections based clustering (random/spectral) [Ng, Jordan, Weiss]
– Spectral-based representations – [Belkin, Niyogi]
– Unsupervised SVM’s [Xu and Schuurmans]

Many more …..



Formalizing the broad notion
of clustering – Why?

• Different clustering techniques often lead to qualitatively 
different results. Which should be used when? (Model 
selection).

• Evaluating the quality of clustering methods –
currently this is embarrassingly ad hoc.

• Distinguishing significant structure from random
fata morgana.

• Providing performance guarantees for sample-based 
clustering algorithms.

• Much more …



Some attempts to 
Axiomatizing Clustering

• Jardine and Sibson (1971), 
• Hartigan (1975), 
• Jane and Dubes (1981) 
• Puzicha-Hofmann-Buhmann (2000)
• Kleinberg (2002)



The Basic Setting
• For a finite domain set SS, a dissimilarity

function (DF) is a symmetric mapping 
d:SxSd:SxS → RR++ such that
d(x,yd(x,y)=0)=0 iff x=yx=y.

• A clustering function takes a dissimilarity
function on SS and returns a partition of SS.

We wish to define the properties that distinguish clustering
functions (from any other functions that output domain 

partitions).



Kleinberg’s Axioms
• Scale Invariance

F(F(λλd)=d)=F(dF(d)) for all d d and all non-negative λλ.

• Richness
For any finite domain SS,
{{F(dF(d): d ): d is a DF over S}={P:P S}={P:P a partition of S}S}

• Consistency
If dd’’ equals dd except for shrinking distances 
within clusters of F(dF(d)) or stretching between-
cluster distances (w.r.t. F(dF(d))), then F(dF(d)=)=F(dF(d’’).).



Kleinberg’s Impossibility result

There exist no clustering function

Proof:

Scaling up

Consistency



A Different Perspective-
Axioms as a tool for classifying clustering paradigms

• The goal is to generate a variety of axioms (or properties) over a fixed 
framework, so that different clustering approaches could be classified by the 
different subsets of axioms they satisfy.
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Ideal Theory

• We would like to have a list of simple properties
so that major clustering methods are distinguishable from 
each other using these properties.

• We would like the axioms to be such that all methods satisfy 
all of them, and nothing that is clearly not a clustering 
satisfies all of them.

(this is probably too much to hope for).

• In the remainder of this talk, I would like to discuss
some candidate “axioms” and “properties” to get a taste
of what this theory-development program may involve.



Types of Axioms/Properties

• Richness requirements
E.g., relaxations of Kelinberg’s richness, e.g.,
{{F(dF(d): d ): d is a DF over S}={P:P S}={P:P a partition of S S into k k sets}}

• Invariance/Robustness/Stability requirements.
E.g., Scale-Invariance, Consistency, robustness
to perturbations of dd (“smoothness” of FF) or stability
w.r.t. sampling of SS. 



Relaxations of Consistency

• Local Consistency –
Let CC11, ……CCkk be the clusters of F(dF(d). ). 
For every λλ0 0 ≥≥ 1 1 and positive λλ11, .., ..λλk k ≤≤ 11, if dd’’ is defined by:

λλiid(a,bd(a,b)) if aa and bb are in CCii

dd’’(a,b(a,b)=)=
λλ00d(a,b)d(a,b) if a,ba,b are not in the same F(dF(d))--cluster, 

then F(dF(d)=)=F(dF(d’’).).

Is there any known clustering method for which it fails?

(What about Rate Distortion? ..)



Some more structure

• For partitions PP11, PP22 of {1, {1, ……m}m} say that PP11 refines PP22 if 
every cluster of PP11 is contained in some cluster of PP22. 

• A collection C={PC={Pii}} is a chain if, for any PP, Q,Q, in C,C, one of 
them refines the other.

• A collection of partitions is an antichain, if no partition 
there refines another.

• Kleiberg’s impossibility result can be rephrased as
“If FF is Scale Invariant and Consistent then its range is an 
antichain”.



Relaxations of Consistency

• Refinement Consistency
Same as Consistency (shrink in-cluster, strech between-
clusters) but we relax the Consistency requirement 
“F(dF(d)=)=F(dF(d’’))” to 

“one of F(dF(d), ), F(dF(d’’)) is a refinement of the other”.

• Note: A natural version of Single Linkage (“join x,y, iff
d(x,y) < λ[max{d(s,t): s,t in X}]”) satisfies this + Scale 
Invariance+ Richness. 
So Kleinberg’s impossibility result breaks down.

Should this be an “axiom”? 
Is there any common clustering function that fails that?



More on ‘Refinement Consistency’
• “Minimize Sum of In-Cluster Distances” satisfies it
(as well as Richness and Scale Invariance).

• Center-Based clustering fails to satisfy Refinement 
Consistency

• This is quite surprising, since they look very much alike.
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(Where dd is Euclidean distance, and ccii the center of 
mass of CCii)



Hierarchical Clustering

• Hierarchical clustering takes, on top of dd, a “coarseness”
parameter tt. 

For any fixed tt, F(t,dF(t,d)) is  a clustering function.

• We require, for every dd:
– CCdd={={F(t,dF(t,d): 0 ): 0 ≤ t t ≤ MaxMax}} a chain.
– F(0,d)= {{x}: x F(0,d)= {{x}: x εε S}S} and F(F(MaxMax,d,d)={S})={S}..



Hierarchical versions of axioms

• Scale Invariance: For any d, and λ>0,
{{F(t,dF(t,d): t} = {): t} = {F(tF(t, , λλd):td):t}} (as sets of partitions).

• Richness:  For any finite domain SS,
{{{{F(t,d):tF(t,d):t}: d }: d is a DF over S}={C:C S}={C:C a chain of partitions of
S S (with the needed Min and Max partitions)}}.

• Consistency: If, for some tt, dd’’ is an F(t,dF(t,d)) -consistent
transformation of dd, then, for some tt’’, F(t,dF(t,d)=)=F(tF(t’’,d,d’’))



Characterizing Single Linkage

• Ordinal Clustering axiom
If, for all w,x,y,zw,x,y,z,,
d(w,xd(w,x)<)<d(y,zd(y,z)) iff dd’’(w,x(w,x)<)<dd’’(yz(yz))
then {{F(t,dF(t,d): t} = {): t} = {F(t,dF(t,d’’):t):t}} (as sets of partitions).
(note that this implies Scale Invariance)

• Hierarchical Richness + Consistency + Ordinal 
Clustering characterize Single Linkage clustering.



Stability/Robustness axioms

• Relaxing Invariance to “Robustness”
Namely, “Small changes in dd should result in 
small changes of f(df(d))”.

• Statistical setting and Stability axioms.

• Axioms as tools for Model Selection.



• There is some large, possibly infinite, domain set XX.

• An unknown probability distribution PP over XX
generates an  i. i.d sample, S S ⊆⊆ XX.

• Upon viewing such a sample, a learner wishes to deduce
a clustering, as a simple, yet meaningful, description of
the distribution. 

Sample Based Clustering



• Cluster independent samples of the data.

• Compare the resulting clusterings.

• Meaningful clusterings should not change much from 
one independent sample to another.

• Rational: To help quantify whether algorithm-
generated clusterings reflect properties of the 
underlying data distribution, rather than being 
just an artifact of sample randomness.

Stability - basic idea



Other types of clustering

• Culotta and McCallum’s “Clusterwise Similarity”

• Edge-Detection (advantage to smooth contours)

• Texture clustering

-The professors example.



Conclusions and open questions
• There is a place for developing an axiomatic 

framework for clustering.

• The existing negative results do not rule
out the possibility of useful axiomatization.

• We should also develop a system of “clustering 
properties” for a taxonomy of clustering methods.

• There are many possible routes to take and 
hidden subtleties in this project.


