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Defining the Problem

☞ Given a set of data vectors, define clustering as a data partitioning problem

• Clustering is ”hard” as opposed to ”soft” clustering offered by the model

estimation approaches (e.g., mixture modelling)

☞ A data assignment (partitioning) can be represented as a vector of cluster labels

• Given a set of n vectors xn, find the best clustering vector yn

• Clustering is flat, there is no hierarchy between the clusters

☞ The number of clusters (possible labels) is unknown, determining it is part of the
problem

• Need to be able to compare clusterings with different number of cluster labels

☞ Distinguish between

• selection criterion (a function determining the goodness of a clustering), and

• search (a procedure for finding good clusterings)
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Information-Theoretic Clustering
☞ Intuitive idea: assign together those data vectors that compress well together

☞ Why?

• In order to compress several data vectors together in an optimal manner, you need
to capture all the common regularities found in the data

• Hence, the more the data vectors in a cluster are ”similar” (the more they are
governed by the same regularities), the better you can compress the cluster

• The total code length (sum of all the compressed clusters) is a global criterion
forming a dependence between the clusters

• Code length offers a ”universal scale”, making it possible to compare clusterings of
different complexity, i.e., with different number of cluster labels (”Occam’s razor”)

☞ P.Kontkanen, P.Myllymäki, W.Buntine, J.Rissanen, H.Tirri, An MDL Framework for Data Clustering

• focus on comparing different clustering criteria.

☞ P.Kontkanen, P.Myllymäki, An Empirical Comparison of NML Clustering Algorithms. (Pascal Work-
shop on Statistics and Optimization of Clustering, July 2005.)

• use one clustering criterion, focus on comparing different search algorithms.
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Stochastic Complexity
☞ Central concept in the Minimum Description Length

(MDL) framework for statistical modeling.

☞ Stochastic complexity = the shortest description length
of a given data set relative to a model class M.

☞ Model class: a set of parametric distributions indexed by
elements of Θ ∈ R

d:

M = {P (·|θ) : θ ∈ Θ}.

☞ Old formalizations of SC: BIC, marginal likelihood.

☞ Modern formalization: Stochastic complexity =
Normalized Maximum Likelihood (NML).
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Normalized Maximum Likelihood
☞ The maximum likelihood model θ̂(D) (in model class M)

with respect to data D is

θ̂(D) = arg max
θ∈Θ

{P (D | θ,M)}.

☞ Define stochastic complexity as the result of the following
minmax optimization problem:

PNML(·) = arg min
Q

max
D′

(log P (D′ | θ̂(D′),M) − log Q(D′))

☞ Solution (the NML distribution/code):

PNML(D) =
P (D | θ̂(D),M)

∑
D′ P (D′ | θ̂(D′),M)
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An Example Model Class
☞ Assume the observed data xn to consist of values of m

discrete variables X1, . . . , Xm.

☞ The cluster labels yn are interpreted as missing data con-
cerning a discrete variable Y .

☞ The ”goodness” of a clustering yn is defined as the NML
code length for the complete data D = (xn, yn) with
respect to chosen model class.

☞ The local independence model class: variables
X1, . . . , Xm are conditionally independent given
the value of Y (the ”Naive Bayes” model).

• Computational reasons

• Easily interpretable clusters
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The NML Clustering Criterion
☞ The optimal clustering yn is the one that leads to shortest

code length when the clustering is compressed together with
the observed data xn with respect to the NML distribution

PNML(xn, yn) =
P (xn, yn | θ̂(xn, yn))

∑
x′n,y′n P (x′n, y′n | θ̂(x′n, y′n))

.

☞ In principle, computing the denominator (”regret”) takes ex-
ponential time, but:

☞ With respect to the local independence model class discussed
earlier, can be computed exactly in time O(n + K) and ap-
proximated in time O(K) (where n is the size of the observed
data set xn and K is the number of cluster labels found in
yn).
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Summary

☞ Formulated clustering as a missing data estimation
problem

☞ Presented an information-theoretic NML criterion for
choosing between alternative clusterings

☞ For an interesting, practically useful model class, the
criterion can be computed efficiently

☞ Empirical results are very encouraging

☞ Clustering search space still exponential, clever
heuristics are necessary
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