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“Clustering”
• Clustering with respect to a specific model / structure / 

objective
• Gaussian mixture model

– Each point comes from one of k “centers”
– Gaussian cloud around each center
– For now: unit-variance Gaussians, uniform prior over choice of center

• As an optimization problem:
– Likelihood of centers:

Σi log( Σj exp -(xi-µj)2/2 )
– k-means objective—Likelihood of assignment:

Σi minj (xi-µj)2



Is Clustering Hard or Easy?

• k-means (and ML estimation?) is NP-hard
– For some point configurations, it is hard to find the 
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Is Clustering Hard or Easy?
(when its interesting)

• k-means (and ML estimation?) is NP-hard
– For some point configurations, it is hard to find the 

optimal solution.
– But do these point configurations actually correspond 

to clusters of points?
• Well separated Gaussian clusters, lots of data

– Poly time algorithms for very large separation, #points
– Empirically, EM* works (modest separation, #points)

• Not enough data
– Can’t identify clusters (ML clustering meaningless)

*EM with some bells and whistles: spectral projection (PCA), pruning centers, etc



Effect of “Signal Strength”
Large separation,

More samples

Small separation,
Less samples

Lots of data—
true solution creates 
distinct peak.
Easy to find.

Not enough data—
“optimal” solution is 
meaningless.



Effect of “Signal Strength”
Large separation,

More samples

Small separation,
Less samples

Lots of data—
true solution creates 
distinct peak.
Easy to find.

Just enough data—
optimal solution is 
meaningful, but hard to 
find?

Not enough data—
“optimal” solution is 
meaningless.



Effect of “Signal Strength”

Not enough data—
“optimal” solution is 
meaningless.

Lots of data—
true solution creates 
distinct peak.
Easy to find.

Just enough data—
optimal solution is 
meaningful, but hard to 
find?
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Infinite data limit:
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Mode always at true model

Determined by
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Effect of “Signal Strength”
Infinite data limit:
Ex[cost(x;model)] = KL(true||model)

Mode always at true model

Determined by
• number of clusters (k)
• dimensionality (d)
• separation (s)

Actual log-likelihood

Also depends on:
• sample size (n)

“local ML model” ~
[Redner Walker 84]

true
model
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Informational and
Computational Limits

sample
size (n)

separation (s)

• What are the informational and computational limits?

• Is there a gap?

• Is there some minimum required separation for 
computational tractability?
• Is the learning the centers always easy given the true 
distribution?

Analytic, quantitative answers.
Independent of specific 
algorithm / estimator
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Empirical objective and evaluation
(e.g. minimization objective)

Can it be used to recover the clustering (as specified above)?
Post-hoc analysis: is what we found “real”?

Algorithm
How well does it achieve objective?
How efficient is it?
Under what circumstances?
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Clustering
Model of clustering

What structure are we trying to capture?
What properties do we expect the data to have?
What are we trying to get out of it?
What is a “good clustering”?

Questions
about the world

Mathematics

Empirical objective and evaluation
(e.g. minimization objective)

Can it be used to recover the clustering (as specified above)?
Post-hoc analysis: is what we found “real”?

Can what we found generalize?

Algorithm
How well does it achieve objective?
How efficient is it?
Under what circumstances?





“Clustering is Easy”, take 1:
Approximation Algorithms

(1+ε)-Approximation for k-means in time 
O(2(k/ε)constnd) [Kumar Sabharwal Sen 2004]

For any data set of points, find clustering with
k-means cost · (1+ε)×cost-of-optimal-clustering



“Clustering is Easy”, take 1:
Approximation Algorithms

(1+ε)-Approximation for k-means in time 
O(2(k/ε)constnd) [Kumar Sabharwal Sen 2004]

cost([µ1,µ2]) ≈ ∑i minj (xi-µj)2 ≈ d·n
cost([0,0]) ≈ ∑i minj (xi-0)2 ≈ (d+25)·n

⇒ [0,0] is a (1+25/d)-approximation

Need ε < sep2/d, time becomes O(2(kds)constn)

0.5 N(µ1,I) + 0.5 N(µ2,I)
µ1 = ( 5,0,0,0,…,0)
µ2 = (-5,0,0,0,…,0)



“Clustering is Easy”, take 2:
Data drawn from a Gaussian Mixture

x1, x2,…, xn ~ 1/k N(µ1,σ2I) + 1/k N(µ2,σ2I) + L + 1/k N(µk,σ2I)

|µi-µj|>s·σ

• Find the modes
(ε-neighborhood with the most points; point 
with closest neighbors)

– Required sample size: n=2Ω(d)

• Randomly project to Θ(log k) dimensions
– Now n = Ω(klog2 1/δ) enough to find modes
– With s>½d½, modes maintained in projection

[Dasgupta 99]
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“Clustering is Easy”, take 2:
Data drawn from a Gaussian Mixture

x1, x2,…, xn ~ 1/k N(µ1,σ2I) + 1/k N(µ2,σ2I) + L + 1/k N(µk,σ2I)

|µi-µj|>s·σ

• Randomly project to Θ(log k) dimensions
– Now n = Ω(klog2 1/δ) enough to find modes
– With s>½d½, modes maintained in projection

• Project to k principal directions (PCA)
– Spherical Gaussian components: k principal 

directions of true distribution span centers
– Required separation only s = Ω(k¼ log dk)

[Dasgupta 99]

[Vempala Wang 04]



“Clustering is Easy”, take 2:
Data drawn from a Gaussian Mixture

x1, x2,…, xn ~ 1/k N(µ1,σ2I) + 1/k N(µ2,σ2I) + L + 1/k N(µk,σ2I)

|µi-µj|>s·σ

Spectral projection, 
then distances 

n =
Ω(d3k2log(dk/sδ))

s = Ω(k¼ log dk) Vempala
Wang 
2004

Distance baseds = Ω(d¼ log d)Arora
Kannan
2001

2 round EM with 
Θ(k·logk) centers

n = poly(k)s = Ω(d¼)
(large d)

Dagupta
Schulman 
2000

Dasgupta
1999

s > 0.5d½ n = Ω(klog2 1/δ) Random projection,  
then mode finding

all
between-class

distance

all
within-class

distance 

>

General mixture of Gaussians:
[Kannan Salmasian Vempala 2005] s=Ω(k5/2log(kd)), n=Ω(k2d·log5(d))
[Achliopts McSherry 2005] s>4k+o(k), n=Ω(k2d)
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