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Abstract

Clustering1 denominates a range of different tasks including vector quantization, graph-
cut problems, bump-hunting and optimal compression. This presentation motivates the
viewpoint that the class of staircases is implicitly the object of study underlying those
various tasks. This assertion provides a natural way to formulate and study the theoretical
counterpart to many empirical clustering algorithms.

Clustering Shrinkage

Empirical clustering shrinkage was studied in (Pelckmans et al., 2005)2, following from a costfunction
for a set of unlabeled datapoints D = {xi}N

i=1 ⊂ RD and its corresponding representatives (or centroids)
presented in functional form as M = {m(xi)}N

i=1 ⊂ RD:

m̂ = arg min
m:RD→RD

J p,q
γ (m) =

1
p

N∑

i=1

‖m(xi)− xi‖p + γ
∑

i<j

‖m(xi)−m(xj)‖q , (1)

where attention is restricted to the projection of the function m̂ to the datapoints M. We denote the two
terms of the rhs. as the reconstruction term and the clustering regularization term respectively. Note that
sparseness in the difference between two centroids ‖m(xi)−m(xj)‖ = 0 indicate that the corresponding
datapoints xi and xj are assigned to a common cluster with centroid m(xi) = m(xj). The mentioned
paper studied the convex counterpart using p = 2 and q = 1 (cfr. the LASSO estimator) which can be
solved as a QP problem using standard software tools.
This presentation will focus on the consequences of the clear optimization point of view from a theoretical
perspective. First of all, we consider the case where we count the number of nonzero differences (infor-
mally denoted as q = 0). It was argued that the resulting costfunction is minimized by a k-means algorithm
using an alternating global optimization algorithm. A second improvement to (1) shifts the focus to local
differences instead of the global term

∑
i<j ‖m(xi)−m(xj)‖:

m̂ε = arg min
m:RD→RD

J ε,p
γ (m) =

1
p

N∑

i=1

‖m(xi)− xi‖p +
γ

|B(ε)|
N∑

i=1,

∑

‖xi−xj‖≤ε

I (‖m(xi)−m(xj)‖ > 0) ,

(2)
where |B(ε)| measures the volume of the balls B(ε; x) = {y ∈ RD : ‖x− y‖ ≤ ε} with radius ε. As such,
the second term measures the density of different assigned datapoints in a local neighborhood employing
a similar mechanism as in the histogram density estimator. Note that the case where ε → +∞ correspond
with (1) where q = 0. If ε → 0 when N → +∞, the algorithm implementing (2) can be expected to
converge to the following minimizer.

Definition 1 (Theoretical Shrinkage Clustering) Let m : R→ R be such that lim‖δ‖→0
m(x−δ)−m(x+δ)

|B(‖δ‖)|
exists almost everywhere. Let the cdf P (x) underlying the dataset be known and assume its pdf p(x) exists
everywhere and is nonzero on a connected compact interval C ∈ R with nonzero measure |C| > 0. We

1The authors like to acknowledge constructive discussions with U. von Luxburg, J. Shawe-Taylor, M.Pontil, O.
Chapelle, A.Zien and others.

2K. Pelckmans J.A.K. Suykens and B. De Moor, Convex clustering shrinkage. In ”Statistics and Optimization of
Clustering Workshop”, PASCAL, 2005.



will study the following theoretical counterpart to (2)

m̂ = arg min
m:R→R

J p,0
γ (m) =

∫

C

∥∥m(x)− x
∥∥

p
dP (x) + γ

∫

C

‖m′(x)‖0 dP (x), (3)

where we define the latter term -denoted further as the zero-norm variation- formally as follows

‖m′(x)‖0 , lim
ε→0

(
I (m(B(x; ε)) 6= const)

|B(x, ε)|
)

, (4)

with the characteristic function I
(
m(B(x; ε)) 6= const

)
equals one if ∃y ∈ B(x; ε) such that ‖m(x) −

m(y)‖ > 0 (B(x, ε) contains parts of different clusters), and equal to zero otherwise.

Intuitively, the zero-norm variation expresses the probability that any point x ∈ C cannot be assigned to
the same cluster as its immediate neighbors, representing the required degenerate solutions (clusters). This
construction triggers the following representer result. We restrict for this presentation the attention to the
univariate case D = 1 for notational convenience.

Theorem 1 (Univariate Staircase Representation) When P (x) is a fixed, smooth and differentiable dis-
tribution function with pdf p : R → R+ which is nonzero on a compact interval C ⊂ R, the minimizer to
(3) takes the form of a staircase function uniquely defined on C with a finite number of positive steps (say
K < +∞) of size a = (a1, . . . , aK)T ∈ RK at the points D(K) = {x(k)}K

k=1 ⊂ C

m̂
(
x; a,D(K)

)
=

K∑

k=1

akI
(
x > x(k)

)
s.t. ak ≥ 0, x(k) ∈ C ∀k (5)

Moreover, the optimization problem (3) is equivalent to the problem

min
a,D(K)

J p
K

(
a,D(K)

)
=

∫

C

∥∥∥∥∥
K∑

k=1

akI
(
x > x(k)

)− x

∥∥∥∥∥
p

p(x)dx +
K∑

k=1

p(x(k)), (6)

where K ∈ N relates to γ ∈ R+ in a way depending on D.

The proof is based on the fact that the term (6) grows unboundedly if m has an input region in C - say the
region [a, b] ⊂ C with a < b - where the function is nonconstant such that m′(x) > 0 for a ≤ x ≤ b. From
this it follows that the following inequality holds
∫

C

‖m′(x)‖0 dP (x) ≥ lim
0<δ→0

∫ b

a

(
I
(|m(x− δ)−m(x + δ)| > 0

)

2δ

)
dP (x) ≥ lim

0<δ→0

∫ b

a

dP (x)
2δ

→ +∞
(7)

and the zero-norm variation becomes unbounded whenever the function m contains not only variations on
sets with zero measure (steps). Monotonicity of ak follows directly from the reconstruction term.

Interpretations

Equation (6) then underlies various techniques collected under the denominator of clustering. While vec-
tor quantization algorithms as k-means (I) emphasize the reconstruction term, In density based algorithms
-also referred to as bump-hunting - and min-cut algorithms (II), the regularization term is stressed while
the reconstruction term keeps the cut normalized. Moreover, it it is argued that by considering the solution-
path S =

{
M̂ | ∃γ s.t. M̂ = arg minM J p,q

γ (M)
}

, one obtains the result of an hierarchical clustering
algorithm (III). Furthermore one may also view (6) as approaching the task of optimal coding (IV), in
the sense of ”finding a short code for X that preserves the maximum information about X itself.” Note
that by replacing the reconstruction term by the KL-distance between X and m(X), a more information
theoretic oriented context can be adopted. Finally, we want to hint to the problem of finding the optimal
bin placement of a histogram (V) for optimally reconstructing the density underlying a finite dataset. This
link can play an important role in the task of histogram based density estimation based on multivariate data
(e.g. D = 3, 4).
An important consequence of Theorem 1 is that analysts now have to study the class of staircase functions
(as in e.g. classification), its projection on the given datasetD (cfr. assignment problem), and the evaluation
of the staircase in new points (cfr. extension operator). This discriminates this track from the research on
(local) convergence of proposed algorithms and gives a clearcut interpretation of the notion of stability
(regularization) in clustering algorithms. 3
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