
Multi-agent random walks for local clustering on graphs

Morteza Alamgir
Max Planck Institute for Biological Cybernetics

Tübingen, Germany
Email: morteza@tuebingen.mpg.de

Ulrike von Luxburg
Max Planck Institute for Biological Cybernetics

Tübingen, Germany
Email: ulrike.luxburg@tuebingen.mpg.de

Abstract—We consider the problem of local graph clustering
where the aim is to discover the local cluster corresponding
to a point of interest. The most popular algorithms to solve
this problem start a random walk at the point of interest and
let it run until some stopping criterion is met. The vertices
visited are then considered the local cluster. We suggest a more
powerful alternative, the multi-agent random walk. It consists
of several “agents” connected by a fixed rope of length l. All
agents move independently like a standard random walk on
the graph, but they are constrained to have distance at most l
from each other. The main insight is that for several agents it is
harder to simultaneously travel over the bottleneck of a graph
than for just one agent. Hence, the multi-agent random walk
has less tendency to mistakenly merge two different clusters
than the original random walk. In our paper we analyze
the multi-agent random walk theoretically and compare it
experimentally to the major local graph clustering algorithms
from the literature. We find that our multi-agent random walk
consistently outperforms these algorithms.

Keywords-Local Clustering; Graph Clustering; Random
Walk; Mixing Time.

I. INTRODUCTION

Graph clustering is an omnipresent problem in data min-
ing ([5], [13]). Given a particular graph, the goal is to
find “clusters” or communities in the graph such that the
vertices in the same community are highly connected to
each other and only sparsely connected to vertices outside
of their community. A big problem in practice is that graphs
often have an enormous size, which makes the application
of standard graph clustering algorithms such as spectral
clustering infeasible.
A promising alternative is represented by the class of local
clustering algorithms. Here the goal is not to find a global
clustering of the whole graph, but to find “the cluster” of a
particular vertex of interest. For example, in social network
analysis one might want to investigate the community a par-
ticular person belongs to. The advantage of local clustering
algorithms is that we never consider the graph as a whole.
All computations are local in the sense that we only need
to have access to and operate on a small “local” part of the
adjacency matrix, which leads to efficient space and time
complexity of the algorithm. The prize we pay is that we
cannot guarantee that the cluster found by the algorithm is
a true, global cluster of the graph; we can only say that it

looks like a good cluster based on the local information we
have seen.

Recently there has been a lot of interest in local algorithms
in the data mining and machine learning community. One
of the most popular local clustering algorithms is the Nibble
algorithm described in [14]. Given the vertex v of interest,
one considers a random walk (RW) on the graph that starts
at vertex v. This random walk is biased in the sense that
it only jumps along “important” edges, unimportant edges
(with low weight) are ignored. The random walk runs until
a certain stopping criterion is met, for example when the
conductance of the set of visited vertices gets too large. The
set of visited vertices is then considered the community of v.
For further development based on the nibble algorithm see
[2] and [3]. Applications of random-walk based clustering
algorithms can be found in many areas, for example in image
segmentation [8], [12].

The reason why the random walks is a well-suited tool for
local clustering is obvious: they locally explore the neigh-
borhood of a vertex and with reasonably high probability
stay inside a cluster rather than transitioning to a different
cluster. Moreover, they can be implemented with low space
complexity. In our paper, we suggest to use a novel kind
of random walk for local exploration, called multi-agent
random walk (MARW). Consider a “agents”, each agent
moving like an individual random walk on the graph. The
agents are tied together by a “rope” of length l. As long as
the distance between all agents is smaller than l, all of them
can move independently from each other. However, they are
constrained such that the distance between any two agents
is never larger than l.

The reason why the MARW is advantageous for local
clustering is that the probability of transitioning between
two different clusters is significantly reduced in the MARW
compared to the standard RW. Consequently, the MARW
discovers tighter clusters than the standard RW.

To the best of our knowledge, the idea of studying
a MARW is completely new. Only after we had started
working on this question, a group of mathematicians
submitted two papers on arxiv that study a similar object
called “spider walk”, but from a completely different
perspective ([6],[7]). Another related paper is the one by
[1]. It has an intention opposite of ours: they want to

construct an alternative to the standard random walk that
travels faster between different clusters. To this end, the
authors run several random walks completely independently
from each other. In this way one can speed up the global
exploration of large graphs. This setting can also be covered
in our model, namely as the extreme case of having rope
of length infinity. See below for further discussion.

The goal of our paper is to introduce multi-agent random
walks and study some of their basic properties. We present
several theoretical approaches that show that if we consider
a MARW with a agents coupled by a small rope length
l, then the probability of transitioning between different
clusters decreases with the power of a: if this probability is
p for the standard RW, it is about pa for the MARW. We
show in experiments on toy data and on real world data
that MARWs are well-suited for local clustering indeed. In
particular, they outperform the state-of-the-art algorithms
by [14] and [2]. In general, we believe that the technique
of multi-agent random walks can be very fruitful in several
domains of data mining and machine learning.

II. THE MULTI-AGENT RANDOM WALK

Let G = (V,E) be a weighted graph with weighted
adjacency matrix W = (wij)ij . The graph can be directed or
undirected. Denote the degree of vertex vi by di =

∑
j wij .

Let the degree matrix D be the diagonal matrix with entries
di. The simple RW on G is defined as the random walk
with transition probabilities P = D−1W .

To introduce the MARW we need to define a distance
function dist : V × V → R on the original set of vertices.
When working on geometric graphs, that is, the vertices
have an interpretation as points in some metric space, we
use the distance in the underlying space as distance between
vertices. Otherwise we use the shortest path distance.

Formally, a MARW with a agents and rope length l on
graph G can be defined as a simple random walk on the state
space S consisting of all unordered valid a-tuples of the n
original vertices (possibly with repeated entries). We call an
a-tuple valid if the distance between any two vertices is not
greater than l. Then define the probability of transitioning
from s = (s1, ..., sa) ∈ S to t = (t1, ..., ta) ∈ S as

M(s, t) :=


0 if ∃i such that

dist(si, ti) > l∑
σ∈Sa

∏a
i=1 P (sσ(i), tj) otherwise.

Here σ runs over the set Sa of all permutations of a
elements. Note that the definition is fine for the purpose

of defining the MARW, but the matrix M it is completely
impractical to work with: in the worst case it has size O(n2a)
and the permutations are hard to track.

To implement the MARW in practice there are several
natural variants: the agents can walk one after the other or all
at the same time; and they can be allowed to sit on the same
vertex or not. Intuitively, in natural graphs these variants will
behave similarly, even though they might behave slightly
different in certain pathological examples. However, they
have different complexities.

In this paper we focus on the most natural construction:
agents move at the same time and are allowed to sit on
the same vertex. Assume we start with a agents in locations
v1, ..., va. We suggest a new step of the MARW by perform-
ing a independent simple random walks, one for each agent.
Then we check if the new vertices still satisfy the condition
on the rope length. If yes, we accept the step, otherwise we
discard it. Discarding many suggested new states is not a
problem in practice if the out-degree of each vertex is not
considerably big.

In applications with large degree vertices, we suggest to
use the MARW variant where agents do not move together,
but one after the other. Here we randomly select one agent at
a time, suggest a new position for this agent by a standard
random step and accept it if the rope length condition is
satisfied. Note that much less positions are rejected in this
version than in the version where all agents move at the same
time. It can be seen that both variants of the MARW have
similar properties, but the one where we move all agents at
the same time is easier to analyze theoretically. This is the
case we consider in the rest of the paper.

In order to check the condition of the rope length we
need to compute the shortest path distance. This is tractable
as we usually work with small rope lengths l and thus only
need to compute the shortest paths between vertices in
small neighborhoods.

The MARW has two parameters: the number a of agents
and the rope length l. Much of the following theory is
devoted to understanding the influence and interplay of
these two parameters. We are going to characterize the
behavior of the MARW by how easily it transitions between
different clusters. We provide several arguments that, for
reasonably small a and l, the MARW behaves like a
“power” of the original RW.

For example, we will see that given a neighborhood
graph on a sample from some underlying density g, the
MARW with a agents and reasonably small rope length l
behaves like a random walk on a sample drawn according
to ga. As the peaks of the density g are amplified in ga and
the valleys get even deeper, the likelihood of transitioning
between different clusters of the distribution become smaller
for the MARW than for the original RW. This means that

clusters are “more expressed” in the MARW than in RW.

Let us introduce one concept that will be used many
times in the rest of the paper: the MARW-graph. We have
seen above that a MARW on a graph G can be described
as a Markov chain on the product space of the vertices of
G. To compare the properties of the standard random walk
RW and the MARW, it is often convenient to consider the
MARW as a simple random walk on some graph G′. For
example, it is easy to see that for rope length l = 0 and a
agents the MARW on G coincides with a simple random
walk on the graph G′ that has the same vertices as G, but
the edge weights wij are replaced by wa

ij (see next section).
More intricate constructions can be made for the case that
l > 0. In the rest of the paper, whenever we are able to
construct a graph G′ such that the simple random walk on
G′ coincides with the MARW on G, we will call G′ the
MARW-graph.

III. HOW THE NUMBER OF AGENTS AFFECTS THE
MIXING TIME

In this section we want to investigate how the MARW’s
likelihood to jump outside a cluster behaves in dependency
of the number of agents.

A. Intuitive example: a chain graph

We would like to start this section by considering an
intuitive example MARW on the directed and weighted
graph in Figure 1a with p < 0.5. The graph consists of
two clusters on the right and left side of the chain, and a
boundary vertex B at the middle. Inside each region, the
transition probabilities are the same.

For simplicity let us start with case l = 0. Here we have
a agents that need to move simultaneously. The states of the
MARW-graph G′ coincide with the vertices of G. Assume
all agents sit on vertex i. If Pij denotes the probability
that one individual random walker goes along edge ij, the
probability that a agents do so simultaneously corresponds
to P a

ij . Moreover, there is a considerable probability that the
a agents do not agree in which direction they want to walk,
namely 1 −

∑
j P a

ij . If we ignore this self-loop, then the
loop-free MARW with rope-length 0 can be interpreted as a
simple random walk on the graph G with edge weights wa

ij .
In particular, the MARW-graph is just the original graph,
but with edge weights taken to the power a (see Figure 1b).
Thus, whenever there is a choice of going in the direction
of high or low edge weights, the MARW will choose the
high weight version even more often than the standard RW.

We now want to argue that in the case of small but positive
l the MARW behaves very similarly as in the case l = 0.
To see this, consider how the center of mass of the agents
moves. If all agents move in the same direction, the center

of mass does the same. Intuitively, when l > 0 we allow
the agents to explore the vertices around the mass center,
and by increasing l this allowed region will get bigger. We
will now show that if the center of mass is not too close
to the boundary (compared to l) and there is a “drift” away
from the cluster boundary, then the MARW tends to follow
this drift. Consequently, it tends to move away from the
boundary towards the center of a cluster.

Consider the same graph as above with l=1 and a=2.
Assume that both agents are in the cluster on the right
side. Each agent will go with probability p to the left and
probability 1−p to the right. Consider the center of mass of
the two agents. Depending on the movement of agents it will
stay, go to the right or go to the left. If both of agents go to
the right, which happens with probability (1−p)2, the center
of mass will also move to the right. With similar arguments
we can see that it moves to the left with probability p2.
It stays on the same vertex when the two agents want
to move in different directions. They either change their
place (with probability p(1−p)) or cannot move because of
violating condition on l (with probability (1 − p)p). Thus,
the probability of staying at the same vertex is given as
2p(1− p).
We can conclude that the center of mass of the two agents
moves like a simple random walk on another graph G′,
namely the graph whose vertices correspond to the “mid
point” between two consecutive vertices (Figure 1c). In
G′ we have squared transition probabilities, except for the
vertices near the cluster boundary where boundary effects
play a role.

This example shows that, compared to the original
random walk, the probability that a MARW walks in a
region of low density is the square of the probability of the
original random walk. Increasing l will increase the size
of the boundary, but otherwise the argument will work as
well. If we consider a > 2 agents, one can show in the
same example that the ratio of the transition probabilities
away from / towards the cluster boundary change from 1−p

p

to (1−p
p)O(a). We do not specify the details because of lack

of space.

B. More rigorous: bounding the spectral gap

The main reason that we introduced the MARW is
because we want to increase the probability of staying
within a community. One way to treat this formally is
to analyze the spectral gap of the graph, in particular
the second eigenvalue λ2 of the transition matrix. This
eigenvalue is both a measure for how clustered the graph is
(for example, it can be used to bound the Cheeger cut) and
can also be used to bound the mixing time of the random
walk. The smaller λ2, the more clustered the graph is, and
the larger the mixing time is. Thus, if λ2 of the MARW
decreases compared to the standard random walk, then we

(a)

(b)

(c)

Figure 1: (a) A simple directed graph. (b) Corresponding MARW graph for two agent random walk with l = 0. (c)
Corresponding MARW graph for two agent random walk with l = 1. Initially the two agents are placed in two neighbor
nodes. Unnamed nodes correspond to center of masses and the self loops are omitted to keep the figures simple.

can formally conclude that the MARW takes longer to
travel between different clusters.

In this section we treat the special case where l = 0.
Our analysis will be mainly useful in weighted graphs. As
we have already seen above, for l = 0 the MARW-graph
G′ has the same vertices as G but with edge weights raised
to the power of a. We now want to compare the spectral
gaps of G and G′. For a fair comparison we need to ensure
that we consider the MARW without self-loops (otherwise
the mixing time of the MARW increases trivially as the
random walk often stays at a vertex without moving). As
it is hard to argue about the spectral gap itself, we will
compare lower bounds on the spectral gap.

These lower bounds will be provided by means of the
Poincaré inequality (see [4] for a general introduction to
this technique). The outline of this technique is as follows:
for each pair of vertices (X, Y) in the graph we need to
select a “canonical path” γXY in the graph that connects
these two vertices. Then we need to consider all edges in the
graph and investigate how many of the paths γXY traverse
this edge. We need to control the maximum of this “load”
over all edges. Intuitively, a high load means that many
paths need to traverse the same edges, that the graph has
a bottleneck. Formally, the spectral gap β is related to the
maximum average load b as follows (cf. Corollary 1 and 2
in [4]; we adapted their statements to the case of weighted
graphs):

β ≥ vol(G)wmin

d2
max|γmax|b

(1)

where di =
∑

j wij is the weighted degree, vol(G) =∑
i di denotes the volume of the graph, wmin the minimal

edge weight, dmax the maximal degree and b is the maximal
load defined by

b := max
{e edge}

|{γXY

∣∣ e ∈ γXY }|.

Here |γmax| is the maximal number of edges on the
canonical paths. We will now compare the Poincaré bounds
on the spectral gaps of G and G′.

Theorem 1 (Spectral gap of the MARW in case l = 0):
Consider the lower bound on the spectral gap provided by
the Poincaré technique. If this bound is u for the standard
RW, then it is uCa−1 for the MARW with a agents and
rope length l = 0. In general, C is a constant with C ≤ 1
and for weighted graphs with non-uniform weights, it
always satisfies C < 1.

Proof: As explained above, the standard random walk
and the MARW can both be seen as random walks on the
same graph, just the edge weights are different. For this
reason, we can use the same set of canonical paths in both
graphs (and we do not need to specify it explicitly in our
proof). In particular, the maximal load b and the maximal
path length |γmax| coincide in both graphs. What is different
for both random walks are the minimal and maximal weights
and degrees. Denoting the various quantities for G by normal
letters and the corresponding ones of the MARW with a tilde
on top, we obtain the following relations:

w̃min = wa
min (2)

d̃max ≤ da
max (3)

vol(G̃) =
∑

edge e

w̃e =
∑

edge e

wa
e

≥
(
∑

edge e we)a

|E|a−1
=

vol(G)a

|E|a−1
(4)

β̃ ≥ vol(G̃)w̃min

d̃2
max|γmax|b

≥ vol(G)awa
min

|E|a−1d2a
max|γmax|b

= β(
vol(G)wmin

|E|d2
max

)a−1 (5)

If we can show that

C :=
vol(G)wmin

|E|d2
max

!
≤ 1 (6)

then the bound for spectral gap of MARW will exponen-
tially decrease with a. Indeed,

vol(G)wmin = wmin

∑
e

de ≤ wmin|E|wmax ≤ |E|d2
max

This proposition shows that for a MARW with a agents
on a weighted graph, a lower bound on the spectral gap will
decrease with “the a-th power” of defined C. In particular,
as the gap of the standard random walk is always smaller
than 1, this means that the bound on the spectral gap of the
MARW is a power of a smaller than the gap in the original
graph. Even though this does not prove that the spectral gap
itself has the same behavior, it is a strong indication that
this might be the case. In this case, we can conclude that the
“bottlenecks” in the MARW are much harder to overcome
than the ones in the original random walk.

Note that if we consider unweighted graphs (that is
wij ∈ {0, 1})), then the special case of the loop-free
MARW with l = 0 corresponds to the standard random
walk. This just shows that in this case, the technique of
bounding the spectral gap the way we do it is suboptimal
and leads to the trivial result that both gaps are bounded by
the same quantity.

In case where l > 0 but l is still small we expect a
similar behavior as for the case l = 0: the mixing time
will be much smaller than the one for the original random
walk. Only when l becomes bigger, this behavior starts to
change. On the other end, when l tends to ∞, the effect
is turned around: the random walk mixes much faster than
the original random walk, see [1] and next section.

IV. ANALYZING MARWS ON ε-NEIGHBORHOOD GRAPHS

In this section we analyze the case of random geometric
graphs, in particular ε-graphs. These graphs are widely
used in data mining and machine learning, and the effect
of replacing the RW by the MARW can be visualized in
a very intuitive manner. Assume we are given a sample
of points drawn i.i.d. from some underlying probability
distribution with density f on R

d. The ε-graph takes
these points as vertices and connects two points by an
unweighted edge if the points have distance at most ε from
each other. Intuitively, the ε-graph is supposed to show the
structure of the underlying probability density f . As an
example consider the density in Figure 2d. It consists of
two clearly separated high density regions corresponding
to two clusters. A sample of points from this density can
be seen in Figure 2a and expresses the cluster structure as
well. If we now build an ε-graph on this sample (with a
reasonable choice of ε, say ε = 1), then this graph consists
of two distinct clusters as well: each cluster has many
connections inside the cluster and only few connections to
the other cluster.

As we are going to explain now, the advantage of the
geometric setting is that replacing a standard RW by a
MARW can be interpreted as changing the cluster structure
of the underlying density. We will see that for reasonably
small l, replacing the standard RW by the MARW has a
similar effect as replacing a random walk on n points drawn
from the original density g by a random walk of O(ñ)
points drawn from density ga. Depending on the structure
of graph, ñ can vary from n to na. In particular, the peaks
of ga will be much sharper than the ones of g, leading to
a much lower probability of transitioning between different
modes of the underlying distribution.

For the ease of presentation we start with the case
a = 2 and l = ε. Here we define the distance between
two vertices in the metric of the underlying space (this
corresponds to l = 1 if the distance between two vertices
in the graph is measured by the shortest path distance). The
general case will be treated later.

Let us describe the MARW-graph G′ for the special case.
G′ will contain two types of vertices: vertices corresponding
to the situation that the two agents sit on the same vertex
of G, and vertices corresponding to the situation that the
two agents sit at the two ends of an edge of G. We denote
the set of first type vertices by U1 = {ux,x | x ∈ V } and
the second type of vertices by U2 = {ux,y | ex,y ∈ E}.
Two vertices ux1,y1 and ux2,y2 are connected by a directed
edge in G′ whenever it is possible to move the two agents
from {x1, y1} to {x2, y2} in one step in the graph G. The
weight of an edge in G′ will be defined as the probability

−2 0 2 4 6 8 10

−2

0

2

4

6

(a) Original sample from density f . Shows
moderate cluster structure.

(b) Vertices of the MARW graph for small l.
Shows high cluster structure (a = 3 and l = 3).

(c) Vertices of the MARW graph for large l. No
cluster structure any more (a = 3 and l = 7).

0

5

10

−4
−2

0
2

4
6

8

0

0.05

0.1

0.15

(d) Density f

0

5

10

−4
−2

0
2

4
6

8

0

0.05

0.1

0.15

(e) Density f ′ for small l (a = 3 and l = 3).

0

5

10

−4
−2

0
2

4
6

8

0

0.05

0.1

0.15

(f) Density f ′ for large l (a = 3 and l = 7). By
choosing a large l the density smoothes heavily.

Figure 2: Density function and samples from a mixture of gaussians and the corresponding MARW’s.

that the MARW performs the corresponding step on G.
Note that we define G′ without self-loops. As the original
graph G is unweighted, it is easy to see that the weights
of all outgoing edges of a vertex ux,y are identical. We
can represent G′ as a geometric graph by identifying each
vertex ux,y in G′ with a point in R

d, namely with the
center of mass of x and y. For an example consider Figure
2. We sampled 110 random points from a mixture of two
Gaussians with different covariances in 2 dimensions and
built an unweighted kNN-graph with k = 15 on this sample.
The sample itself is shown in Figure 2a. Now consider a
MARW with a = 3 and l = 1 on G (and shortest path as
distance function). In Figure 2b we show the vertices of
the corresponding MARW-graph G′ (where we represented
the vertices ux,y,z by the center of mass of x, y, z).

We now want to compare the geometric properties of the
two graphs G and G′. Consider the ball B of radius ε/2
centered at a particular point x ∈ G. Denote the number of
sample points in B by k. By definition, all sample points
in B have distance at most ε to each other and thus are
connected in G. The graph G′ will have k type-1 vertices
corresponding to the points in B, and k(k − 1)/2 type-2
vertices corresponding to pairs of points in B. This shows
that the number of vertices in B increases from O(k) in G
to O(k2) in G′.

Now recall that our sample points have been sampled from
an underlying density f . Assume that ε is small enough such
that the density on an ε-ball can be considered approximately
constant. Consider two ε-balls B1 and B2 centered x1, x2.
By the definition of a density, the numbers of sample points
in B1 and B2 are roughly related by

vertices of G in B1

vertices of G in B2
≈ f(x1)

f(x2)

What would be a density f ′ corresponding to the vertices
in G′? As we have seen above, when k is the number of
vertices of G inside B, then the number of vertices of G′

inside B is of the order k2. Hence we deduce

f ′(x1)
f ′(x2)

≈ # vertices of G′ in B1

vertices of G′ in B2
≈ f(x1)2

f(x2)2

Consequently, G′ can be interpreted as a geometric graph
based on the underlying density f ′ = f2. Squaring a density
leads to much sharper peaks in the modes of the distribution
and deeper valleys between the modes, that is the cluster
structure is much better expressed. For an illustration
compare the densities in Figures 2d (original density) and
2e (density corresponding to a MARW with small rope
length). It is clear that a random walk on a sample of f ′

(corresponding to the MARW on G) has a much harder
time than the original RW on a sample of f (corresponding

to the RW on G) to transition from one cluster to the other
one. Additionally, the number of vertices in G′ corresponds
to |V |+ |E|, that is, it is of the order O(|E|) rather than of
the order O(|V |) as in the original graph G. This effect can
be seen in Figures 2a (vertices of G) and 2b (vertices of G′).

In case of general a > 1 and rope length l = ε a
similar argument shows that the distribution of vertices
in G′ is raised to the power of a: denoting the number
of cliques of size t by Vt, the number of vertices in G′

is
∑a

i=1

(
a−1
i−1

)
|Vi|. To see this, note that the number of

placements for a agents on i vertices with at least one agent
at each vertex is

(
a−1
i−1

)
. Depending on the exact numbers

|Vi|, the number of vertices in G′ can vary between O(n)
to O(na).

The above argument still holds if the rope length l is
larger than ε. In this case, however, we can no longer argue
about the densities f and f ′ themselves, but rather about
their smoothed counterparts obtained by convoluting f and
f ′ with the function that is constant on an l-ball. Denote the
characteristic function of a ball with radius l and centered
at x0 by χB(x0,l):

χB(x0,l)(x) =

{
0 if d(x, x0) > l

1 otherwise.

Then the density of G′ satisfies

f ′(x1)
f ′(x2)

≈
(
∫

f(t)χB(x1−t,l)dt)a

(
∫

f(t)χB(x2−t,l)dt)a
.

That means G′ can be interpreted as a geometric graph
based on the underlying distribution

f ′(x) ∝ (f(x) ∗ χB(x,l))a (7)

where ∗ is the convolution operator. For small l these
convolutions will be reasonably close to the original density
functions, and lead to the same intuition as above. However,
as soon as l gets very large (for example, l is as large
as the distance between different modes of the underlying
distribution), then the interpretation changes completely. In
this case, the density f ′ is smoothed so heavily that the
different modes are not visible any more and the distribution
becomes unimodal in the extreme case. Then, the random
walk on G′ mixes very fast as there are no bottlenecks any
more, and transitions easily between points corresponding
to different clusters of the original density f . In this case,
we completely changed the behavior of the MARW: instead
of mixing slower than the original RW it now mixes much
faster (and this is the case considered in the paper [1]).

This effect is demonstrated in Figure 2. Plot 2f shows
the smoothed density f ′. As we can see, the clusters
have vanished completely and are replaced by a unimodal
distribution. The same effect can be seen for the points of

the MARW-graph G′ in Figure 2c.

These insights can now be used to understand the choice
of l. There is a trade-off between two goals. The rope
length has to be considerably smaller than the diameter
of the cluster and the distance between different clusters
one wants to find (otherwise the smoothed distributions
loose their cluster properties as in Figure 2f). On the other
hand, it should be as large as possible in order to allow G′

to have many vertices (otherwise G′ will look almost as
G, and the effect of sharpening the peaks by squaring the
distribution will not occur).

While the above argument was for ε-graphs, one can
observe similar effect on other types of random geometric
graphs such as kNN graphs or Gaussian neighborhood
graphs. By a similar analysis one can also discuss the
behavior of a MARW on a general, unweighted non-
metric graph. Even though we do not have a geometric
interpretation in terms of an underlying distribution, the
effect of the rope length and the trade-off between the
different aims when choosing a good rope length is the
same as described above.

V. EXPERIMENTS

Here we demonstrate different aspects of the MARW
in simulations and experiments and compare it to other
algorithms from the literature. By using expensive
partitioning algorithms, the authors of [11] found that even
in massive graphs the typical clusters have a relatively small
size. This shows that in real world datasets one should look
for clusters in the range of hundreds to thousands of nodes.
To validate local clustering algorithms it is thus enough to
study graphs up to a couple of thousand vertices, which is
what we do in our experiments.

Whenever we know the true cluster labels in a data set,
we measure the performance of a local clustering algorithm
by the following procedure. We call the starting vertex xs,
the true label of vertex x by y(x) and the set of visited
vertices by S. Then we define r as the ratio

r =
|{x | y(x) = y(xs)}|

|S|
which is the fraction of the visited points belonging to the
same cluster as xs.

A. Effect of rope length and number of agents in a toy
example

We sample 200 points from a mixture of Gaussians
(similar to Figure 2a) in R

2 and build the kNN graph for
k = 10. We run the MARW with a = [2, 3, 4] for rope
lengths in the interval [1, 10]. We allow the MARW to take
200 steps and record the set of visited points.

2 4 6 8 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

l (Rope length)

ρ

a =2

a = 3

a=4

(a)

2 4 6 8 10

0.7

0.75

0.8

0.85

0.9

0.95

1

a (Number of agents)

ρ

l=4

l=5

l=6

l=7

(b)

2 4 6 8 10
100

200

300

400

500

600

l (rope length)

N
u

m
b

e
r

o
f

s
te

p
s

a=2

a=3

a=4

(c)

Figure 3: Influence of rope length l and number a of agents on the MARW

In our first experiment we fix the number of agents and
investigate the effect of the rope length. We say that a
MARW is accepted if r ≥ 0.9 . We repeat this procedure
100 times with random starting vertices. The performance
measure ρ is defined by:

ρ =
Number of accepted MARW s

Number of MARW s
The results are shown in the Figure 3a. We can observe
very good performance of MARW for l ≈ [1, 4]. In this
regime, nearly all MARWs get accepted. The performance
drops by increasing l. Note that in this data set, the width
of the bottleneck region is about 3 (cf. Figure 2a). This
corroborates our rules of thumb stated in Section 4: as soon
as l gets considerably wider than the bottleneck, the random
walk mixes too fast, hence many MARWs get rejected in
our experiment.

As a baseline we also used a simple RW on the same
data. It leads to performance ρ = 55%., which is way worse
than the MARW results. Additionally we observed that the
variance of the value ρ (measured over different starting
points) is much higher for RW than for the MARW. This
shows that MARWs not only give better performance, but
also lead to a more stable behavior.

Next we investigate the effect of the number of agents on
the same graph by running the MARW for a ∈ [2, 10] and
l ∈ {4, 5, 6, 7}. The results are shown in Figure 3b. When
l is still small, by increasing a we observe an increase of
the performance ρ. That is, in this regime more agents lead
to more accepted MARWs. As soon as the rope length gets
too long (l = 7) the performance decreases with the number
of agents. This is the regime where the MARW mixes faster
than the orignial RW. All in all, this experiment shows that
the rope length l governs whether the cluster structure of
the MARW is more or less expressed than in the original
density. The number of agents acts as an amplifier.

Note that while increasing the number of agents amplifies
the performance of the MARW, it also has a negative side
effect. The larger a, the slower the MARW moves. This has
two effects. First, when we implement the MARW, much
more proposal steps get rejected for violating the rope length
condition (leading to an increase in running time). Second,
the tendency of staying in a high density region might be so
pronounced in a MARW with large a that it barely moves
around but often visits vertices it has already seen. This
effect is demonstrated in Figure 3c. We run MARW with

Table I: Percentage of correctly visited vertices for different real world datasets. N is the number of vertices, E is the number
of edges, D is the dimensionality of data and K is the number of clusters. The number in parentheses shows the cluster size
we used as stopping criterion

Dataset N E D K Nibble Apr.PageRank MARW a = 3 MARW a = 4

Wine (40) 178 1268 13 2 82.31 86.8 88.02 91.76
Breast Cancer(160) 683 10022 9 2 93.26 94.66 94.37 96.02
USPS (50) 7291 106722 256 10 88.5 92.78 93.37 97.43
USPS (100) 7291 106722 256 10 81.48 88.15 90.85 92.21

different number of agents and rope lengths until they visit
80 different nodes. The number of steps during the visit
shows that by increasing the number of agents, they tend to
stay in local neighborhoods. This effect vanishes when we
increase the rope length. When the rope length gets long
enough (in this experiment, around 6), agents move with
more freedom and less tendency to stay in the same place.

B. Real world examples

We now compare performance of various algorithms on
some real world datasets: our MARW, the Nibble algorithm
from [14] and Apr.PageRank from [2]. Note that all algo-
rithms have different stopping criteria. In order to make
them comparable, we simply run all algorithms from the
same starting point until they discovered a given number of
vertices. Then we analyze the quality of the clusters that are
discovered by the algorithms. We set the parameters in the
algorithms as follows. In Nibble we optimize the threshold
parameter by approximately finding smallest threshold that
allows us to discover the mentioned number of vertices. For
approximate PageRank, using the value of α suggested by
the authors led to poor results. So instead of using their
values we report the best result obtained for a range of
parameters α.

We use the Wine and Breast Cancer datasets from UCI
repository, the USPS handwritten digit recognition dataset
[9] and a collaboration network of arxiv papers [10].

For the first three data sets the true cluster labels
are known. For these data sets we first constructed an
unweighted kNN graph (k = 10). We started the algorithm
from a random starting point. We ran each algorithm
until visiting a given number of points: approximately
2
3 × size of smallest cluster vertices in Wine and Breast
Cancer datasets, and 50 resp. 100 points in the USPS
data set. Then we used r, the percentage of visited points
from the correct cluster, as our performance measure. We
repeated the experiments for 100 random starting points.
For our algorithm we simply set the rope length to l = 1
(we did not optimize over l or a in any way). For the other
algorithms we chose the parameters as described above.
The results for a = 3, 4 are shown in Table I. We can see

that our algorithm achieves the best results on all data sets.

It worth to note that even though using more agents
improves the performance, it also increases the running time
of the algorithm. There is a trade off between performance
versus running time and visiting majority of points in the
cluster. MARW with big a will move slower and will
mainly remain in the center of a cluster. This effect is
demonstrated in Table II. In this table we fix the number
of different vertices we want to visit. We then report how
many steps the random walk had to perform to achieve
this (a step is simply one “hop” of the random walk). For
example, in the Wine data set we can see that in order to
visit 40 different vertices, the MARW with a = 3 had to
take about 500 steps while the MARW with a = 4 already
needed about 1100 steps. This shows that for larger a, the
random walk tends to visit the same vertices more often
and is more reluctant to move away from high-density
regions.

The collaboration network dataset consists of an undi-
rected non-metric graph with about 12000 vertices. As
ground truth is not known on this data set, we use the
conductance of the set of visited vertices as a performance
measure. The conductance of a cluster is defined as the ratio
of the number of its external connections to the number of its
total connections. Formally, the conductance of a subgraph
S from graph G = {V,E} is defined as:

Φ(S) =

∑
i∈S,j∈V −S wij

min(vol(S), vol(V − S))
(8)

vol(A) =
∑

i∈A,j∈V

wij (9)

The conductance is a popular quantity to measure the
quality of a cluster in a graph. The aim is to visit a set with
small conductance.

We run two rounds of experiments, one aiming for 200
and one for 500 vertices. For the MARW we use the
shortest path distance as underlying distance function and
rope lengths l = 1 (for the 200 vertices) and l = 2 (for
the 500 vertices). We set the number of agents to 3. The
results are shown in Table III. In this example by visiting

Table II: We fixed the number of different vertices we wanted to visit (reported in parentheses). The numbers in the table
show how many steps the MARW needed to make in order to visit this number of different vertices, on average over different
starting points. The rope length l was fixed to l = 1.

Number of agents Wine (40) Breast Cancer (100) USPS (50) USPS (100)
a = 3 487 2417 156 361
a = 4 1142 19798 281 752

Table III: Conductance of the set of visited points in the collaboration dataset. N is the number of vertices and E is the
number of edges.

Dataset N E Nibble Apr.PageRank MARW a = 3

Collaboration (200), l=1 12008 237010 0.5068 0.4916 0.4342
Collaboration (500), l=2 12008 237010 0.4703 0.4565 0.194

500 vertices, MARW works significantly better than other
algorithms and the average conductance is less than half of
conductance reached in other algorithms.

VI. DISCUSSION

In this paper we introduce the new concept of the multi-
agent random walk. We provide several ways to analyze the
behavior of the MARW. The bottom line of these analyses is
always the same: using the MARW instead of the standard
RW enhances the cluster properties of the graph. Hence, the
MARW is well-suited for local clustering. Our experiments
show that it outperforms the major other approaches from
the literature.

The concept of a MARW is new, and we believe that
it has many advantages and can be applied to other data
mining problems. For example, one might be able to
derive a spectral clustering algorithm based on the MARW-
Laplacian instead of the standard random walk Laplacian,
and similar ideas might work for semi-supervised learning.
Essentially, any algorithm that works with random walks
or related matrices might be adapted to the MARW. It will
be a matter of future work to fully explore the possibilities
of multi-agent random walks in data mining and machine
learning.

REFERENCES

[1] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker, and
M. Tuttle. Many random walks are faster than one. In
SPAA ’08: Proceedings of the twentieth annual symposium
on Parallelism in algorithms and architectures, pages 119–
128, 2008.

[2] R. Andersen, F. Chung, and K. Lang. Local graph partitioning
using pagerank vectors. In FOCS, pages 475–486, 2006.

[3] R. Andersen and Y. Peres. Finding sparse cuts locally using
evolving sets. In STOC, pages 235–244, 2009.

[4] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues
of Markov chains. The Annals of Applied Probability, pages
36–61, 1991.

[5] C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A min-max
cut algorithm for graph partitioning and data clustering. In
ICDM, pages 107–114, 2001.

[6] C. Gallesco, S. Müller, and S. Popov. A note on spider walks.
ArXiv e-prints, October 2009.

[7] C. Gallesco, S. Müller, S. Popov, and M. Vachkovskaia.
Spiders in random environment. ArXiv e-prints, January 2010.

[8] L. Grady. Random walks for image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
28:1768–1783, 2006.

[9] J. J. Hull. A database for handwritten text recognition
research. IEEE Trans. Pattern Anal. Mach. Intell., 16(5):550–
554, 1994.

[10] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM Trans. Knowl.
Discov. Data, 1(1):2, 2007.

[11] J. Leskovec, K. Lang, A Dasgupta, and M. Mahoney. Sta-
tistical properties of community structure in large social and
information networks. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web, pages 695–704,
2008.

[12] J. Pan, H. Yang, C. Faloutsos, and P. Duygulu. Automatic
multimedia cross-modal correlation discovery. In KDD, pages
653–658, 2004.

[13] J. Ruan and W. Zhang. An efficient spectral algorithm
for network community discovery and its applications to
biological and social networks. In ICDM, pages 643–648,
2007.

[14] D. Spielman and S. Teng. A local clustering algorithm for
massive graphs and its application to nearly-linear time graph
partitioning. CoRR, abs/0809.3232, 2008.

