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Abstract

This paper deals with the question whether the quality of different clustering al-
gorithms can be compared by a general, scientifically sound procedure which is inde-
pendent of particular clustering algorithms. In our opinion, the major obstacle is the
difficulty to evaluate a clustering algorithm without taking into account the context:
why does the user cluster his data in the first place, and what does he want to do
with the clustering afterwards? We suggest that clustering should not be treated as
an application-independent mathematical problem, but should always be studied in
the context of its end-use. Different techniques to evaluate clustering algorithms have
to be developed for different uses of clustering. To simplify this procedure it will be
useful to build a “taxonomy of clustering problems” to identify clustering applications
which can be treated in a unified way.

Preamble

Every year, dozens of papers on clustering algorithms get published. Researchers contin-
uously invent new clustering algorithms and work on improving existing ones.

People who work on end-use problems (“applications”) remain rather untouched
by most of these papers. They continue to use their favorite algorithms, usually
k-means and linkage algorithms.

Researchers who publish papers about new clustering algorithms always struggle with the
same question: How can they convince a reader that their algorithm is “good”?

Applied people don’t really care. They don’t believe that there is an algorithm which
can always discover what they are looking for, and they don’t think that there exists
“the true clustering” of a data set anyway. They continue to use k-means.
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Researchers treat clustering as if it were a scientific discipline. They try to come up with
various scores to assess the quality of clustering algorithms.

Applied people consider clustering rather as an art or a craft. If used with skill, it
can be a useful tool. No more, no less.

1 Introduction

In his famous Turing award lecture, Knuth (1974) says of Computer Programming that
“It is clearly an art, but many feel that a science is possible and desirable.” Whether
clustering is art or science is, in fact, an old question. “Is taxonomy art, or science, or
both?” so asked Anderson (1974) in reviewing the state of systematic biological taxonomy.
He justifiably went on to claim

Discussions of taxonomic theory or practice that refer to the concepts “sci-
ence” and “art” without finer delineation will be less clear and less produc-
tive than discussions that first attempt definitions of specific concepts in the
panoply of science such as precision or objectivity or repeatability or confi-
dence and then apply these explicitly in evaluating alternatives and specific
steps within the taxonomic process. (Anderson, 1974, p. 59)

Whilst it might seem self-evident that making clustering (or taxonomy if you prefer) more
“scientific” is desirable, it is not obvious how this can be achieved.

Our perspective is that clustering is, in machine learning terminology, “unsupervised clas-
sification.” The aim in clustering is to assign instances into classes, which are not defined
a priori, and which are supposed to somehow reflect the structure of the entities that the
data represents. Note it is common in the broader, non machine learning literature, to
use “classification” when talking of clustering (Bowker and Star, 1999, Farris, 1981).
Clustering is a very basic human activity. It has been argued at length how fundamental it
is in understanding the world (Bowker and Star, 1999)1. It is often presumed that for any
situation where clustering may used there is a single “right” clustering. The presumption
seems to be based on the notion that categories exist independent of human experience
and intent, which has been increasingly discredited — for a cognitive science perspective
see (Lakoff, 1987).
Thus one may be tempted to take refuge in mathematics. But this too is dangerous:

The strive for objectivity, repeatability, testability etc. is a perfectly right
attitude as long as their proper place in the “hierarchy of aims” is maintained,
but becomes very harmful if — as Polish proverb says — the nose is expected

1The reason why Borges’ famous strange classification below strikes as so bizarre is precisely because
it makes us wonder what on earth would it be like to understand the world in that extraordinary manner
— “the impossibility of thinking that” (Foucault, 1970).

These ambiguities, redundancies, and deficiencies recall those attributed by Dr. Franz
Kuhn to a certain Chinese encyclopedia called the Heavenly Emporium of Benevolent Knowl-
edge. In its distant pages it is written that animals are divided into (a) those that belong to
the emperor; (b) embalmed ones; (c) those that are trained; (d) suckling pigs; (e) mermaids;
(f) fabulous ones; (g) stray dogs; (h) those that are included in this classification; (i) those
that tremble as if they were mad; (j) innumerable ones; (k) those drawn with a very fine
camel’s-hair brush; (l) etcetera; (m) those that have just broken the flower vase; (n) those
that at a distance resemble flies. (Borges, 1942)
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to serve the snuff-box: if these tools dominate over the purpose of scientific
research. . . (Ho lyński, 2005, p. 487).

Clustering seems to hold a fascination for mathematicians and engineers and as a conse-
quence there is a large literature on domain independent clustering techniques. However
for several decades there has been criticism that the technologies the mathematicians and
engineers develop do not appeal to people who use classification structures as a central
part of their work (Farris, 1981). Users of classification method disagree in principle with
the notion that clustering is a domain-independent subject:

I suspect that one of the reasons for the persistence of the view that classi-
fication is subject-independent is that classificatory theorists have been largely
insulated from sources that would inform them otherwise (Farris, 1981, p.213).

This lack of interest from users of fancy machine learning clustering methods is seem-
ingly paradoxical. Supervised classification techniques are widely used and appreciated
by many people solving real problems. And clustering seems to simply be “unsupervised
classification.” Supervised clustering can be easily made into a well defined problem with
loss functions which precisely formalize what one is trying to do (and furthermore can be
grounded in a rational way in the real underlying problem). The difficulty with unsuper-
vised clustering is that there is a huge number of possibilities regarding what will be done
with it. And depending on the use to which a clustering is to be put, it may be wonderful
or terrible.

Interestingly there is an analogy we can draw with supervised classification. If one is not
prepared to commit to a particular loss function (as a formal codification of the use to
which your classifier will be put) one can still proceed — one can just try and estimate the
underlying probability distribution; see the discussion of loss functions and ROC curves
in (Reid and Williamson, 2009). This suggests that in so far as clustering is domain
independent, it is about estimating probability distributions or functionals of them. If
that is accepted, then it can be easily formalized using loss functions. Furthermore, the
analogy suggests that in so far as clustering is not about estimating such functionals, it is
essentially domain dependent and any evaluation measures must thus necessarily be also
domain dependent.

Many of the arguments about the right way to cluster, or how to compare clustering
methods are a side-effect of the fact that there are a very wide diversity of clustering
problems. Even within a particular domain of application (say the classification of bio-
logical organisms), there can be very diverse (and opposing) views as to what a valuable
classification is; for example compare phenetics which attempts to classify on the basis ob-
servable characteristics ignoring phylogeny with cladistics which is avowedly phylogenetic.
(See the historical account of the battles in Hull, 1988.) The arguments between adherents
of either of these camps are not resolvable (even in principle) by coming up with some
domain-independent means by which clustering algorithms are judged — their conflict
stems from a disagreement as to what is the real question that needs to be answered.

2 Different uses of clustering and their evaluations

Clustering is a pervasive activity with data and knowledge. It affects knowledge represen-
tation and discovery (Kwasnik, 1999). It defines infrastructures that have real political
significance (Bowker and Star, 1999). It forms the basis for systematic biology, and the
need for classification remains ever-present (Ruepp et al., 2004). It is done pervasively.
Let us just sketch two very distinct purposes for clustering:
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1. Data preprocessing. Clustering is used as an automated pre-processing step in
a whole chain of processing steps. For example, we cluster customers and products
to compress the contents of a huge sales data base before building a recommender
system. Or we cluster the search results of a search engine query to discover whether
the search term was ambiguous, and then use the clustering results to improve the
ranking of the answers. In such situations, the whole purpose of clustering is to
improve the overall performance of the system. This can be quantified, but it is
intrinsically problem dependent how to interpret such numbers.

2. Exploratory data analysis. Here, clustering is used to discover aspects of the
data which are either completely new, or which are already suspected to exist, or
which are hoped not to exist. For example, one can use clustering to define certain
sub-categories of diseases in medicine, or as a means for quality control to detect
undesirable groupings that suggest experimental artifacts or confounding factors in
the data.

Evaluating the usefulness of clustering algorithms

It seems natural that certain clustering algorithms might be “more useful” for data pre-
processing than for exploratory data analysis, and that it is unreasonable to expect a
general evaluation procedure for clustering algorithms which is application independent.
This suggests that the methods for evaluating clustering algorithms have to be different
as well. In the end, all methods of evaluation should try to assess whether the clustering
algorithm is useful, not in an abstract sense, but for serving the purpose we have in mind.
We do not really care how the clustering algorithm works, as long as it achieves the goal
we have set. In particular, it is pointless to discuss whether clustering “is” density-level set
estimation, information-theory, or graph theory. Any algorithm, no matter how it works
internally, has to be useful for the particular application we have in mind. Let us just give
a brief outline how evaluation procedures in the above mentioned applications might look
like.

Clustering for data preprocessing. This is about the only setting where it is straight-
forward to evaluate a clustering algorithm, at least from a methodological point of view.
One can interpret the clustering as just one link in a whole chain of processing steps.
Put more extremely, the clustering (algorithm) is just one more “parameter” which has
to be tuned, and this tuning can be achieved similarly as for all other parameters, for
example by cross validation over the final outcome of our system as a whole. We do not
directly evaluate the “quality” of the clustering, and we are not interested in whether the
clustering algorithm discovers “meaningful groups”. All we care about is the “usefulness”
of the clustering for achieving our final goal. For example, to build a music recommender
system it might be a useful preprocessing step to cluster songs or users into groups to
decrease the size of the underlying data set. In this application we do not care whether
the clustering algorithm yields a meaningful clustering of songs or users, as long as the
final recommender system works well. If it performs superior when a particular clustering
algorithm is used, this is all we need to know about the clustering step. Thus, in the data
preprocessing setting it is clear how the clustering can be evaluated, at least in principle.
How this can be implemented in practice will vary from application to application, and it
still might be challenging. But at least, from a methodological point of view, it is clear
what has to be done.

Clustering for exploratory data analysis.
Exploratory data analysis should ”present the data to the analyst such that he can see
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patterns in the data and formulate interesting hypotheses about the data” (Good, 1983).
As far as we know, it has never been attempted to assess whether clustering in general (or
a particular clustering algorithm) has the potential of being useful for exploratory data
analysis. Additionally to the technical side how to perform clustering, this question also
has a psychological aspect. After all, it is the human user who is going to explore the data
and hopefully detect a pattern. It is a very interesting problem to try to evaluate clustering
(algorithms) for exploratory data analysis. One idea could be to ask humans to use a
particular clustering algorithm to generate hypotheses, and later go and evaluate these
hypotheses on independent data. Major obstacles in this endeavor are how to evaluate
whether a hypothesis is “interesting,” and how to perform a “placebo clustering” as a null
model to compare to.
In this setting, it is very likely that the particular choice of the clustering algorithm is
not very relevant, compared to the design of the human computer interaction interface.
Exploring data is mainly performed visually, and the visualization and data manipulation
capabilities of the system will likely be responsible for success or failure of the attempt
to discover structure in the data. Thus we believe it unlikely that a mathematical loss
function can be found that is an accurate proxy for the overall perceived quality of such
a system.

Evaluation procedures that are not particularly helpful

In most papers about clustering algorithms, one or several of the following methods is
used to show the success of a clustering algorithm:

Evaluation on artificial data sets. Clustering algorithms are applied to artificial data
sets, for example points drawn from a mixture of Gaussians. Then the clustering results
are compared against the “ground truth”. Such a procedure can make sense to evaluate
the statistical performance of a clustering algorithm under particular assumptions on the
data generating process. It cannot be used to evaluate the usefulness of the clustering.

Evaluation on classification benchmark data sets. Clustering algorithms are
applied to classification data sets, that is data sets where points come with class labels.
Then the class labels are treated as the ground truth against which the clustering results
of different algorithms are compared. High agreement with the ground truth is interpreted
as good clustering performance.
In our opinion, this approach is dangerous. The underlying assumption is that points with
the same class labels form clusters. This might be the case for some data sets but not for
others. There might even exist a more natural clustering of the data points which is not
reflected in the current class labels. Or, as it is often the case in high-dimensional data,
different subspaces of features support completely different clusterings. It might very well
happen that a clustering algorithm discovers a very reasonable clustering, but achieves
a very bad classification error. So classification error by itself cannot be used as a valid
score to compare clusterings.
If, on the other hand, clustering is performed as a pre-processing step for a classifier to be
used later on, then it does not make sense to evaluate the classification performance of the
clustering algorithm. As described above one needs to evaluate the whole processing chain.

Evaluation on real world data sets. Sometimes people run their algorithm on a
real data set, and then try to convince the reader that the clusters “make sense” in the
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application2. For example, proteins are grouped according to some known structure. This
is more or less a qualitative version of the approach using benchmark data sets. It can
make sense if the clustering algorithm is intended for use in exploratory data analysis in
this particular application, but does not carry any further meaning otherwise.

Clustering quality scores. There exist many different scores intended to evaluate the
results of clustering algorithms. Typically, these scores take into account within-cluster
similarity, between-cluster similarity, and the sizes of the different clusters. We argue that
all these scores are unsuitable to evaluate the quality of clustering algorithms in an ob-
jective, domain-independent way. Scores are useful on the level of algorithms where they
can be used as an objective function in an optimization problem, and it is a valid research
question how different scores can be optimized efficiently. However, across different al-
gorithms these score tell only little about the usefulness of the clustering, and for every
score preferring one algorithm over the other one can invent another score which does the
opposite. A unique, global, objective score for all clustering problems does not exist.

Statistical significance

So far we have been talking about the usefulness of a clustering. Where do considerations
about statistical significance come into play? In a statistical setup, the basic assumption
is that the given data points are samples from some underlying distribution. There are
many data sets where such an assumption makes sense (customers are samples from the
“set of humans”; a particular set of hand-written digits just contains a few instances out
of a much larger set of “all possible hand written digits”). In such a setting, statisticians
are concerned with the statistical significance of the results obtained on finite data sets. In
the case of clustering: if we would draw another sample of data points, would we construct
similar clusters as on the data set at hand? Or do our clusters just “fit noise” and are
completely meaningless? Can we assign a confidence score to a particular clustering of
a particular data set which tells us how confident we are that the clustering shows true
structure of the underlying space? In many branches of science, it is a strong requirement
to report such confidence scores. For example, in biology one hardly encounters papers
where clustering plays a fundamental roles and no “p-value” is assigned to the clustering.

But how does this statistical aspect fit into our discussion above? Is the “significance” of
a clustering independent of its “usefulness”?

In the preprocessing setting, statistical considerations do not play any role, as long as the
system works. If the clustering algorithm gives different results on different samples, but
the system works on either of these results, then we are fine. For example, many people
use k-means to cluster a huge set of texts, say, in a set of manageable size. If we want
to cluster a data set of 106 items into 103 clusters, it does not really matter where these
clusters are, as long as they serve for the compression. We can have a completely differ-
ent clustering each time we get a new data set, and the overall system might still work fine.

Interestingly, it is in the exploratory setting that statistical significance is important. After
all, a user does not have infinite time to inspect all sorts of meaningless clusterings, and

2Compare Farris: ”A clustering method is selected in each application for its ability to manufacture a
grouping most in accord with the subjective feelings of a “professional taxonomist.” (That taxonomist, of
course, will then claim vindication of his views; they have been verified by an “objective” method!) One
must wonder what value might be attributed to a method chosen primarily for its failure to contradict
preconceptions (Farris, 1981, p. 208)”
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we cannot hope to generate a meaningful hypothesis from nothing. This insight is quite
striking: it is the “soft” exploratory data analysis setting where we have the “hardest”
statistical requirements for our clustering algorithms.

In this sense, there are some applications of clustering where statistical significance is a
necessary requirement for an exhilarative clustering algorithm to be useful. We want to
stress that statistical significance alone is never sufficient, in the end we need the useful-
ness in the sense discussed above.

3 A systematic catalog of clustering problems

We have seen that clustering is used in a variety of contexts with very different goals
and that clustering results cannot be evaluated without taking into account this context.
Johnson explains at length the inadvisability of hoping for general classifications (suitable
for all possible uses)3:

It has been repeatedly stressed . . . that the values of classifications should
be assessed according to the range of their purposes (Johnson, 1968).

Difficulties in identifying problems have delayed statistics far more than
difficulties in solving problems. This seems likely to be the case in the future
too. Thus it is appropriate to be as systematic as we can about unsolved prob-
lems. . . . Different ends require different means and different logical structures.
. . . While techniques are important in experimental statistics, knowing when
to use them and why to use them are more important. (Tukey, 1954)

So how can we now proceed? A straightforward way would be to compile a table of dif-
ferent clustering applications and corresponding evaluation procedures. A more effective
approach might be to come up with a way to treat several clustering applications with
similar methods, so one does not have to start from scratch for every new application. One
way forward is to go to the meta level and systematically build a taxonomy or catalog of
clustering problems (Hartigan, 1977). We believe that this should be done in a solution
agnostic way: define the problem in a purely declarative manner without trying to say
how it should be solved. We conjecture that such a taxonomy will be of considerable help.
This is tantamount the the research program “left to the reader as an exercise” in I.J.
Good’s self-referentially titled The Botrylogy of Botryology (Good, 1977).

We do not yet attempt to suggest how this catalog of clustering problems look like, but
want to point out several “dimensions” of clustering applications which might turn out to
be important in such an endeavor. These dimensions should be independent of a particular
application domain or a particular clustering algorithm.

Qualitative — quantitative. A fundamental distinction is whether the clustering
results are used in a quantitative or qualitative context. A qualitative context is often
the one of exploratory data analysis. Here we are interested in certain properties of the
clusterings, but not in any final scores. Examples for qualitative uses of clustering are:

3The fact that classification depends upon its use and there is no universal scheme possible is a re-
markably old idea. Gilmour and Walters (1964, p.5) quotes Mercier (1912, p.152): “The nature of the
classification that we make . . . must have direct regard to the purpose for which the classification is re-
quired. In as far as it serves the purpose, the classification is a good classification, however ‘artificial’ it
may be. In as far as it does not serve this purpose, it is a bad classification, however ‘natural’ it may be.”
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Detecting latent structure, defining categories in data for later use (e.g. different sub-
categories of a disease), verifying that there is structure in the data , verifying that no
unexpected clusters show up (quality control), verifying that expected clusters are there.
Examples for quantitative uses of clustering are data preprocessing, data compression,
clustering for semi-supervised learning.

Exploratory — confirmatory. There exist two distinct branches of data analysis: con-
firmatory data analysis and exploratory data analysis (Tukey, 1977). While exploratory
data analysis is used to discover patterns in data and to formulate concrete hypotheses
about the data, confirmatory data analysis deals with the question of how to validate a
given hypothesis based on empirical data. Clustering is employed in both contexts.

Unsupervised — supervised. Even though it sounds slightly paradox to machine
learners, there exist different levels of supervision in clustering problems. Situations where
one does not have a clue what one is looking for are rather seldom, and in many cases
additional information can be used. For example in exploratory data analysis, the analyst
usually has a good idea what he is looking for.

Inductive bias. In most applications of clustering, one has a “bias” what one is looking
for. This bias affects the type of clusters one tries to construct. For example, in some
applications the focus might be to join similar data points; for example, when detecting a
chemical compound with similar properties to a given one. In other applications, it might
be more important to separate different points, for example to identify emerging topics
in a stream of news. Such preferences are called the inductive bias. Examples are (see
Figure 1):
• compact clusters — chain-like clusters
• peak-based — gap-based
• flat clustering — hierarchical clustering

Meaningful categories — useful categories. Do we need to find clusters that rep-
resent some understanding of how the data were generated? Not necessarily. Be it for
exploratory analysis or for preprocessing in a prediction task, groupings, which emerge
from the data representation may be useful. For instance, in speech recognition, it is com-
mon to use vector quantization as preprocessing, a method making no assumption about
how data were generated. Similarly, in image processing, connected component methods
do not attempt to uncover the mechanism by which data were generated. However, in
some applications, clustering can be understood as a method for uncovering latent data
structure, and prior knowledge may guide use to elect the most suitable approach. For
instance, phylogenies are usually modeled as a diffusion process and clustering approaches
to such problems usually attempt to uncover the underlying tree/hierarchy, hence are tack-
led hierarchical clustering methods. On the other hand, if we can presume that the data
were generated by a shallow process, there is no reason to use a hierarchical model. For
instance, handwriting used to be taught with a few methods in the US, hence, handwriting
styles could be clustered by assuming just a 2 level random process: drawing the method,
then drawing the writer; Gaussian mixtures or k-means type of algorithms would lend
themselves well to such problems. A third type of model is constraint-based and assumes
symmetric interactions between samples (like in a Markov random field of an Ising model
of magnetism). For instance, dress-code can be assumed to emerge from peer-pressure
and result in clusters of people dressing in a similar way. Graph partitioning methods
may lend themselves better to such cases. Evidently in either of these three cases (diffu-
sion model, component mixture model, and ”magnetic” model), methods of clustering not
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Figure 1: Some aspects of the inductive bias in clustering.

modeling the data generative process might ”work well”, if all we are interested in is mak-
ing groups efficient for compressional of prediction. But the understanding that we gain
is very different and it may make a lot of difference if we want to predict the consequences
of actions or devise policies to attained desired goal. For instance, consider the problem
of epidemiology. Patients with the same symptoms may be clustered assuming one of the
three models described above. In the first case (hierarchical model), a genetic mutation
may be responsible for a disease and tracing a population to a common ancestor may be
useful to diagnose and treat patients. In the second case (mixture model), patients may be
incurring disease because of one categorical factor of variability (environment, diet, etc.)
like in the case of scurvy and lack of vitamin C. Note that this is a very real problem.
People used to think before the “theory of germs” became well accepted after Pasteur’s
experiments that infectious diseases came from an inner predisposition, not from outside
germs. Maybe an appropriate cluster analysis would have proved the theory of predispo-
sition (presumably an inherited trait) wrong. In the third case (magnetic model), disease
transmission by contagion can be well modeled in this way and a different type of disease
prevention policy devised.

All the different properties mentioned above are inherent in the nature of the problem we
want to solve with clustering, and our list is by no means exhaustive. We would like to
stress that we are not looking for properties of clustering algorithms. For example, dis-
tinctions we do not believe to be helpful in our quest are: parametric vs. non-parametric,
frequentist vs. Bayesian, model-based vs. model free, information-theoretic vs. proba-
bilistic, etc.

What is unlikely to work

Universal “Benchmark data sets”. The UCI approach to supervised classification4

is bad enough. But given the diversity of end uses to which clustering is put, such an
approach seems hopeless for clustering. One need only look at how problematic it is to
study taxonomic repeatability within a particular domain to be daunted (Moss, 1971).

4Whereby there is a small fixed set of data sets, divorced from their real end use, that are used as a
simple one-dimensional means of evaluating machine learning solutions.
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Attempting to make things more “scientific” merely by throwing mathematics
at it without thinking through the more general issues discussed above. Why won’t this
work? Well it did not in the past:

“The theoreticians of numerical taxonomy have enjoyed themselves im-
mensely over the past decade (though not without developing several schools
with scant respect for each other!). The mushrooming literature is quite fasci-
nating and new developments tumble after each other. Anyone who is prepared
to learn quite a deal of matrix algebra, some classical mathematical statistics,
some advanced geometry, a little set theory, perhaps a little information theory
and graph theory, and some computer technique, and who has access to a good
computer and enjoys mathematics (as he must if he gets this far!) will probably
find the development of new taximetric methods much more rewarding, more
up-to-date, more ‘general’, and hence more prestigious than merely classifying
plants or animals or working out their phylogenies.” (Johnson, 1968, p. 224).

“The classificatory component of taxonomy cannot itself be made into a sci-
ence by ill-founded philosophy of essentially arbitrary numerical procedures.”
(Johnson, 1968, p. 235)

We believe that if the clustering researchers want to have an impact in real applications (as
it is, for example, the case for support vector machines for supervised classification), then
it is time to start a dialog with practitioners and devise meaningful evaluation procedures
for the different applications of clustering.
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