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Abstract

An important aspect of clustering algorithms is whether plaetitions
constructed on finite samples converge to a useful clugtefithe whole
data space as the sample size increases. This paper iatestihis
question for normalized and unnormalized versions of theufar spec-
tral clustering algorithm. Surprisingly, the convergentennormalized
spectral clustering is more difficult to handle than the ralined case.
Even though recently some first results on the convergenc®mfal-
ized spectral clustering have been obtained, for the unalized case
we have to develop a completely new approach combining tooits
numerical integration, spectral and perturbation theang] probability.
It turns out that while in the normalized case, spectraltelirsg usually
converges to a nice partition of the data space, in the ursiared case
the same only holds under strong additional assumptionshndrie not
always satisfied. We conclude that our analysis gives stewittgnce for
the superiority of normalized spectral clustering. It ghsovides a basis
for future exploration of other Laplacian-based methods.

1 Introduction

Clustering algorithms partition a given data set into salvgroups based on some notion
of similarity between objects. The problem of clusteringniserently difficult and often
lacks clear criteria of “goodness”. Despite the difficidtia determining the quality of a
given partition, it is still possible to study desirable peoties of clusteringlgorithmsfrom

a theoretical point of view. In this paper we study the cdesisy of spectral clustering,
which is an important property in the general framework afistical pattern recognition.
A clustering algorithm is consistent if it produces a wedfided (and, hopefully, sensible)
partition, given sufficiently many data points. The coreisly is a basic sanity check, as an
algorithm which is not consistent would change the partitrmefinitely as we add points to
the dataset, and, consequently, no reasonable small-sa@fbrmance could be expected
at all. Surprisingly, relatively little research into castency of clustering algorithms has



been done so far, exceptions being okfgenters (Pollard, 1981) and linkage algorithms
(Hartigan, 1985).

While finite-sample properties of spectral clustering hagerbstudied from a theoretical
point of view (Spielman and Teng, 1996; Guattery and Mill&398; Kannan et al., 2000;
Ng et al., 2001; Meila and Shi, 2001) we focus on the limit védrefor sample size tending
to infinity. In this paper we develop a new strategy to prouaveogence results for spectral
clustering algorithms. Unlike our previous attempts thistegy allows to obtain results
for both normalized and unnormalized spectral clusterAga first result we can recover
the main theorem of von Luxburg et al. (2004), which had beengu with different and
more restrictive methods, and, in brief, states that uguadtmalized spectral clustering
converges. We also extend that result to the case of mudtigemvectors. Our second result
concerns the case of unnormalized spectral clusteringytiazh no convergence properties
had been known so far. This case is much more difficult to tiiea the normalized
case, as the limit operators have a more complicated formshe that unnormalized
spectral clustering also converges, but only under strddgianal assumptions. Contrary
to the normalized case, those assumptions are not alwagfieshtas we can show by
constructing an example, and in this case there is no hopeofarergence. Even worse,
on a finite sample it is impossible to verify whether the agstions hold or not. As a third
result we prove statements about the form of the limit chirsée It turns out that in case
of convergence, the structure of the clustering constduatefinite samples is conserved in
the limit process. From this we can conclude that if convecgdakes place, then the limit
clustering presents an intuitively appealing partitiortef data space.

It is also interesting to note that several recent methodsdmi-supervised and transduc-
tive learning are based on eigenvectors of similarity gsafgh Belkin and Niyogi, 2003;
Chapelle et al., 2003; Zhu et al., 2003). Our theoreticah&aork can also be applied to
investigate the consistency of those algorithms with ressfpethe unlabeled data.

There is an ongoing debate on the advantages of the noreha&kzsus unnormalized graph
Laplacians for spectral clustering. It has been found eoglly that the normalized version
performs as well or better than the unnormalized versian,(¥an Driessche and Roose,
1995; Weiss, 1999; in the context of semi-supervised legraee also Zhou et al., 2004).
We are now able to provide additional evidence to this effiext a theoretical point of
view. Normalized spectral clustering is a well-behaveaetgm which always converges
to a sensible limit clustering. Unnormalized spectral dting on the other hand should be
treated with care as consistency can only be asserted utndeg issumptions which are
not always satisfied and, moreover, are difficult to checkatfice.

2 Graph Laplacians and spectral clustering on finite samples

In the following we denote by (T') the spectrum of a linear operator, 6YX) the space
of continuous functions ok’ with infinity norm, and byrg(d) the range of a function
d € C(X). For given sample pointX, ..., X,, drawn iid according to an (unknown) dis-
tribution P on some data spack we denote the empirical distribution ,. For a non-
negative, symmetric similarity function : XxX — IR we define the similarity matrix
asK, = (s(X;, X;))ij=1,..n S€ld; := Z?:l s(X;, X;), and define the degree matrix
D,, as the diagonal matrix with entries. The unnormalized Laplacian matrix is defined
asL, := D,, — K,,, and two common ways of normalizing it at& = D, */*L, D, /?

or L := D;'L,. In the following we always arrange the eigenvalues of thplagian
matrices in non-decreasing ordee= \; < \o... < A, respecting their multiplicities. In its
simplest form, unnormalized (resp. normalized) spectatering partitions the sample
points X; into two groups according to whether ti¢h coordinate of the second eigen-
vector is larger or smaller than a certain threshiold IR. Often, instead of considering



only the second eigenvector, one uses the firsigenvectors (for some small number
simultaneously to obtain a partition into several sets.dfooverview of different spectral
clustering algorithms see for example Weiss (1999).

3 Limit results

In this section we want to state and discuss our main restilte general assumptions
in the following three theorems are that the data sp¥de a compact metric space from
which the sample pointsX;),c v are drawn independently according to an unknown prob-
ability distribution P. Moreover we require the similarity function: XxX — IR to be
continuous, and in the normalized case to be bounded awayGrehat iss(x,y) > 1> 0
forall z,y € X and somé € IR. By d € C'(X') we will denote the “degree function”, and
U’ andU will denote the “limit operators” of.!, andL,, for n — co. The exact definitions

of these functions and operators, as well as all further emttiical details, definitions, and
proofs will be postponed to Section 4.

Let us start with the first question raised in the introduttidoes the spectral clustering
constructed on a finite sample converge to a partition of thelevdata space if the sample
size increases? In the normalized case, convergencesréswié recently been obtained
in von Luxburg et al. (2004). However, those methods wereifipally designed for the
normalized Laplacian and cannot be used in the unnormatiaed. Here we state a con-
vergence result for the normalized case in the form how itlmaobtained with our new
methods. The theorem is formulated for the symmetric namatibn L/, but it holds
similarly for the normalizatiord.”” .

Theorem 1 (Convergence of normalized spectral clusteringlnder the general as-
sumptions, if the first eigenvalues of the limit operatdf’ have multiplicity 1, then the
same holds for the first eigenvalues of./, for sufficiently largen. In this case, the first
eigenvalues of!, converge to the firsteigenvalues df’, and the corresponding eigenvec-
tors converge almost surely. The partitions constructeddnynalized spectral clustering
from the firstr eigenvectors on finite samples converge almost surely toiapartition of
the whole data space.

Our new result about the convergence in the unnormalizeslisdake following:

Theorem 2 (Convergence of unnormalized spectral clustery) Under the general as-
sumptions, if the first eigenvalues of the limit operat@f have multiplicity 1 and are not
element ofrg(d), then the same holds for the firsteigenvalues of}—LLn for sufficiently

large n. In this case, the first eigenvalues of L,, converge to the first eigenvalues of/,
and the the corresponding eigenvectors converge almostysdrhe partitions constructed
by unnormalized spectral clustering from the firgigenvectors on finite samples converge
almost surely to a limit partition of the whole data space.

On the first glance, this theorem looks very similar to Theofe if the general assump-
tions are satisfied and the first eigenvalues are “nice”, threrormalized spectral cluster-
ing converges. However, the difference between Theoremmsl2ds what it means for
an eigenvalue to be “nice”. In Theorem 1 we only require tlgeevalues to have mul-
tiplicity 1 (and in fact, if the multiplicity is larger than tve can still prove convergence
of eigenspaces instead of eigenvectors). In Theorem 2 \leowthe conditiom\ ¢ rg(d)
has to be satisfied. In the proof this is needed to ensurehbatigenvalue\ is isolated
in the spectrum of/, which is a fundamental requirement for applying pertudvatheory
to the convergence of eigenvectors. If this condition is saitsfied, perturbation theory
is in principle unsuitable to obtain convergence results for eigenvecioine reason why
this condition appears in the unnormalized case but notémtrmalized case lies in the



structure of the respective limit operators, which, swipgly, is more complicated in the
unnormalized case than in the normalized one. In the nekibseee will construct an ex-
ample where the second eigenvalue indeed lies wilid). This means that there actually
exist situations in which Theorem 2 cannot be applied, amtéeinnormalized spectral
clustering might not converge.

Now we want to turn to the second question raised in the inictdn: In case of conver-
gence, is the limit clustering a reasonable clustering efwthole data space? To answer
this question we analyze the structure of the limit opesaféor simplicity we state this
for the unnormalized case only). Assume that we are givenrtitipp X = U¥ | X;

of the data space intb disjoint sets. If we order the sample points according tar the
memberships in the sefs;, then we can write the Laplacian in form of a block matrix
Ly, =~ (Lijn)i,j=1,..x Where each sub-matrik; ; ,, contains the rows af,, corresponding
to points in sett; and the columns corresponding to pointstn In a similar way, the limit
operatorU can be decomposed into a matrix of operafdys: C(X;) — C(X;). Now we
can show that forall, j = 1, ..., k the sub-matrice%Lwl converge to the corresponding
sub-operator#/;; such that their spectra converge in the same way as in Thedremd 2.
This is a very strong result as it means that for every givetitjman of X', the structure of
the operators is preserved in the limit process.

Theorem 3 (Structure of the limit operators) LetX = U¥_, X; be a partition of the data
space. Letl;;,, be the sub-matrices df,, introduced abovel/;; : C(&X;) — C(&;) the
restrictions ofU corresponding to the set¥; and ;, andU;; ,, and U;; the analogous
quantities for the normalized case. Then under the genexsumptions;- L;; ,, converges
compactly td;; a.s. andL;j)n converges compactly id{j a.s.

With this result it is then possible to give a first answer oe tluestion how the limit
partitions look like. In Meila and Shi (2001) it has been blthed that normalized spectral
clustering tries to find a partition such that a random walkle sample points tends to
stay within each of the partition sefs instead of jumping between them. With the help
of Theorem 3, the same can now be said for the normalized fiantition, and this can
also be extended to the unnormalized case. The operfdtaandU can be interpreted as
diffusion operators on the data space. The limit clusteringto find a partition such that
the diffusion tends to stay within the setsinstead of jumping between them. In particular,
the limit partition segments the data space into sets swhtik similarity within the sets
is high and the similarity between the sets is low, whichitiiely is what clustering is
supposed to do.

4 Mathematical details

In this section we want to explain the general constructiang steps that need to be
taken to prove Theorems 1, 2, and 3. However, as the proofatier technical we only
present proof sketches that convey the overall strategigiled proofs can be found in von
Luxburg (2004) where all proofs are spelled out in full ldng¥loreover, we will focus on
the proof of Theorem 2 as the other results can be provedsasiil

To be able to define convergence of linear operators, allabpes have to act on the same
space. As this is not the case for the matriéggsfor differentn, for eachL,, we will
construct a related operatdi, on the spac&'(X’) which will be used instead af,,. In
Step 2 we show that the interesting eigenvalues and eigmnsam‘%Ln andU,, are in a
one-to-one relationship. Then we will prove that tigconverge in a strong sense to some
limit operatorU on C(X) in Step 3. As we can show in Step 4, this convergence implies
the convergence of eigenvalues and eigenvectot§,ofFinally, assembling the parts will
finish the proof of Theorem 2.



Step 1: Construction of the operatorsU,, on C(X).
We first define the empirical and true degree functionS'{/’) as

dn(z) == /s(x,y)dPn(y) and d(x) := /s(x,y)dP(y).

Corresponding to the matricd3, and K,, we introduce the following multiplication and
integral operators o6/ (X'):

M, f(2) = du(2) f(x) and  Muf(z) = d(x)f(2)
Suf(x) := / @) fWdP.(y)  and  Sf(x):= / s(z.9)f (1) dP(y).

Note thatd,(X;) = 1d;, and forf € C(X) andv = (f(X1),..., f(X,)) it holds
that 1 (D,v); = Mg, f(X;) and1(K,v); = S,f(X;). Hence the functio,, and the
operatorst and S,, are the counterparts of the discrete degréé§ and the matrices

1D, and1 K, . The scaling factot /n comes from the hiddeh/n-factor in the empirical
dlstrlbutlonP The natural pointwise limits of,,, M,, , andsS,, for n — oo are given
by d, My, andS. The operators corresponding to the unnormalized Lapiaddln =

(D, — K,) and its limit operator are
Unf() := Ma, f(z) = Spf(x)  and  Uf(z):= Maf(z) - Sf(z).
Step 2: Relations betweerar(%Ln) and o (Uy,,).

Proposition 4 (Spectral properties) 1. The spectrum df,, consists ofg(d,, ), plus some
isolated eigenvalues with finite multiplicity. The samelsdbrU andrg(d).

2. If f € C(X) is an eigenfunction df/,, with arbitrary eigenvalue\, then the vector
v € R™ withv; = f(X;) is an eigenvector of the matri%(Ln with eigenvalue\.

3. If v is an eigenvector of the matrixL,, with eigenvalue\ ¢ rg(d,), then the
function f(z) = %(Zj s(z, X;)v;)/(dn(x) — X) is the unique eigenfunction &f, with
eigenvalue\ satisfyingf(X;) = v;.

Proof. Itis well-known that the (essential) spectrum of a multiption operator coincides
with the range of the multiplier function. Moreover, the sfpam of a sum of a bounded
operator with a compact operator contains the essentiatrsipe of the bounded operator.
Additionally, it can only contain some isolated eigenvalweth finite multiplicity (e.qg.,
Theorem 1V.5.35 in Kato, 1966). The proofs of the other paftthis proposition can be
obtained by elementary shuffling of eigenvalue equatiousvat be skipped. ©

Step 3: Convergence oU,, to U.

Dealing with the randomness. Recall that the operators,, are random operators as
they depend on the given sample poifts, ..., X,, via the empirical distributior,. One
important tool to cope with this randomness will be the failog proposition:

Proposition 5 (Glivenko-Cantelli class) Let (X, d) be a compact metric space asd:
X'xX — IR continuous. ThetF := {s(z,-); = € X} is a Glivenko-Cantelli class, that is
supex | [ s(z,y)dP,(y) — [ s(z,y)dP(y)| — 0 almost surely.

Proof. This proposition follows from Theorem 2.4.1. of v. d. VaantdaNellner (1996)©

Note that one direct consequence of this proposition is|{fiat- d||. — 0 a.s.



Types of convergencd.et £/ be an arbitrary Banach space aBdts unit ball. A sequence
(Sn)r of linear operators o® is calledcollectively compadf the setl J,, S,, B is relatively
compact inE (with respect to the norm topology). A sequence of operators/erges
collectively compacthyf it converges pointwise and if there exists sof¥ies IV such that
the operatorgsS,, — S),.~n are collectively compact. A sequence of operatmmsverges
compactlyif it converges pointwise and if for every sequenes,),, in B, the sequence
(S—S,)x, is relatively compact. See Anselone (1971) and Chateli@31Lfbr background
reading. A sequence:, ), in E converges up to a change of siinz € F if there exists
a sequencéu,, ), of signsa,, € {—1,+1} such that the sequen¢e, x,,),, converges ta:.

Proposition 6 (U,, converges compactly tdJ a.s.) LetX’ be a compact metric space and
s : XxX — IR continuous. Thel/,, converges t@&/ compactly a.s.

Proof. (a)5,, converges tah collectively compactly a.sWith the help of the Glivenko-
Cantelli property in Proposition 5 it is easy to see tBatconverges t& pointwise, that
is ||Snf — Sfllec — Oa.s. forallf € C(X). As the limit operatorS is compact, to
prove that(S,, — S), are collectively compact a.s. it is enough to prove tfat),, are

collectively compact a.s. This can be done by the Arzelaehsloeorem.

(b) My, converges tal/,; in operator norm a.s.This is a direct consequence of the
Glivenko-Cantelli properties of Proposition 5.

(c) U, = S, — My, converges tdJ = S — M, compactly a.s. Both operator
norm convergence and collectively compact convergencdyiropmpact convergence
(cf. Proposition 3.18 of Chatelin, 1983). Moreover, it isg&o see that the sum of two
compactly converging operators converges compactly. ®

Step 4: Convergence of the eigenfunctions df,, to those ofU.

It is a result of perturbation theory (see the comprehensaament in Chatelin, 1983,
especially Section 5.1) that compact convergence of apesrahplies the convergence of
eigenvalues and spectral projections in the following why is an isolated eigenvalue in
o(U) with finite multiplicity, then there exists a sequentg € o(U,,) of isolated eigen-
values with finite multiplicity such thad,, — X. If the first r eigenvalues of’ have
multiplicity 1, then the same holds for the firsteigenvalues off;, for sufficiently large

n, and thei-th eigenvalues of’,, converge to thé-th eigenvalue of”’. The corresponding
eigenvectors converge up to a change of sign. If the mutttplof the eigenvalues is larger
than 1 but finite, then the corresponding eigenspaces agavéote that for eigenvalues
which are not isolated in the spectrum, convergence carmasserted, and the same holds
for the corresponding eigenvectors (e.g., Section V.3 &tk 1966).

In our case, by Proposition 4 we know that the spectrurty afonsists of the whole in-
tervalrg(d), plus eventually some isolated eigenvalues. Hence an\gyen\ € o(U)

is isolated in the spectrum iff ¢ rg(d) holds, in which case convergence holds as stated
above.

Step 5: Convergence of unnormalized spectral clustering.

Now we can to put together the different parts. In the first steps we transferred the
problem of the convergence of the eigenvectors}{ﬁfn to the convergence of eigenfunc-
tions of U,,. In Step 3 we showed thaf,, converges compactly to the limit operatdr
which according to Step 4 implies the convergence of thengignetions ofU,,. In terms

of the eigenvectors O%Ln this means the following: i\ denotes thej-th eigenvalue

of U with eigenfunctionf € C(X) and A, the j-th eigenvalue of%Ln with eigenvec-
tor v, = (Vn.1,.--,Un.n)’, then there exists a sequence of signs {—1,+1} such that
Sup;_y. ., laivn: — f(X;)] — 0 as. As spectral clustering is constructed from the co-
ordinates of the eigenvectors, this leads to the conveggehspectral clustering in the
unnormalized case. This completes the proof of Theorem 2. ©



The proof for Theorem 1 can be obtained in a very similar wagreHhe limit operator is

U'f(z) = (I - 8')f(x) = f(z) - / (s(z,9)/ V@A) ) (1) AP ().

The main difference to the unnormalized case is that theabeY/,; in U gets replaced by
the identity operatof in U’. This simplifies matters as one can easily express the spectr
of (I — S’) via the spectrum of the compact operatdr From a different point of view,
consider the identity operator as the operator of multgian by the constant one function
1. Its range is the single poimg(1) = {1}, and hence the critical intervag(d) C o(U)
shrinks to the point € o(U’), which in general is a non-isolated eigenvalue with infinite
multiplicity.

Finally, note that it is also possible to prove more geneeasions of Theorems 1 and 2
where the eigenvalues have finite multiplicity larger tharrtead of the convergence of
the eigenvectors we then obtain the convergence of theghi@js on the eigenspaces.

The proof of Theorem 3 works as the ones of the other two tinesr@he exact definitions
of the operators considered in this case are

UL, - C(X;) — C(X,), 63 filx) — / (513 (. 9)/\ (@) () ) 15 ()P ()

Uij : C(X)) — C(X3), Uij f(x) = bidi(w) fi(x) — /Sij(xvy)fj(y)dpj(y)

whered;, f;, P;, ands;; denote the restrictions of the functionstp and X; x X;, respec-
tively, andé;; is 1 if ¢ = j and O otherwise. For the diffusion interpretation, note tha
there exists an ideal partition of the data space (thatis, x;) = 0 for z;, z; in different
setsA; and X}), then the off-diagonal operatot§; andU,; with i # j vanish, and the
first k eigenvectors o/’ andU can be reconstructed by the piecewise constant eigenvec-
tors of the diagonal operatotg/, andU;;. In this situation, spectral clustering recovers
the ideal clustering. If there exists no ideal clustering,there exists a partition such that
the off-diagonal operators are “small” and the diagonalrajoes are “large”, then it can
be seen by perturbation theory arguments that spectraeding will find such a partition.
The off-diagonal operators can be interpreted as diffusfmrators between different clus-
ters (note that even in the unnormalized case, the muktijidin operator only appears in
the diagonal operators). Hence, constructing a clustevittgsmall off-diagonal operators
corresponds to a partition such that few diffusion betwéenctusters takes place.

Finally, we want to construct an example where the secorneheajue ofU satisfies\ ¢
rg(d). LetX = [1,2] C R, s(z,y) := zy, andp a piecewise constant probability density
on X with p(z) = cif 4/3 < z < 5/3 andp(z) = (3 — ¢)/2 otherwise, for some fixed
constantc € [0, 3] (e.g., for smallc this density has two clearly separated high density
regions). The degree function in this casel{s) = 1.5z (independently of) and has
range[1.5, 3] on X. We can see that an eigenfunctionléffor eigenvalue\ ¢ rg(d) has
the form f(z) = Bz/(3z — X\), where the equatiop = [2%/(3z — A\)p(x)dz has to

be satisfied. This means that¢ rg(d) is an eigenvalue of/ iff the equationg()) :=

ff 2?2/(3z — N)p(x)dz L 1is satisfied. For our simple density functipnthis integral
can be solved analytically. It can then been seendfwgt = 1 is only satisfied fot\ = 0,
hence the only eigenvalue outsiderg{d) is the trivial eigenvalue 0.

Note that in applications of spectral clustering, we do naivk the limit operatol/ and
hence cannot test whether its relevant eigenvalues are gsgential spectrumg(d) or
not. If, for some special reason, one really wants to use nmalzed spectral clustering,
one should at least estimate the critical regigfil) by [min; d; /n, max; d; /n] and check
whether the relevant eigenvalues;]loLn are inside or close to this interval or not. This ob-
servation then gives an indication whether the resultsiobtacan considered to be reliable
or not. However, this observation is not a valid statistteat.



5 Conclusions

We have shown that under standard assumptions, normalpesdral clustering always
converges to a limit partition of the whole data space whigheashds only on the probability
distribution P and the similarity functiors. For unnormalized spectral clustering, this can
only be guaranteed under the strong additional assumgtairthe first eigenvalues of the
Laplacian do not fall inside the range of the degree functida shown by our example,
this condition has to be taken seriously.

Consistency results are a basic sanity check for behavistatistical learning algorithms.
Algorithms which do not converge cannot be expected to déxiebable results on finite
samples. Therefore, in the light of our theoretical analyge assert that the normalized
version of spectral clustering should be preferred in iractThis suggestion also extends
to other applications of graph Laplacians including seufiesvised learning.
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