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Abstract

The commute distance between two vertices in a graph is the expected time it takes
a random walk to travel from the first to the second vertex and back. We study the
behavior of the commute distance as the size of the underlying graph increases.
We prove that the commute distance converges to an expression that does not take
into account the structure of the graph at all and that is completely meaningless
as a distance function on the graph. Consequently, the use of the raw commute
distance for machine learning purposes is strongly discouraged for large graphs
and in high dimensions. As an alternative we introduce the amplified commute
distance that corrects for the undesired large sample effects.

1 Introduction

Given an undirected, weighted graph, the commute distance between two vertices u and v is defined
as the expected time it takes a random walk starting in vertex u to travel to vertex v and back to u.
As opposed to the shortest path distance, it takes into account all paths between u and v, not just the
shortest one. As a rule of thumb, the more paths connect u with v, the smaller the commute distance
becomes. As a consequence, it supposedly satisfies the following, highly desirable property:

Property (F): Vertices in the same cluster of the graph have a small commute
distance, whereas two vertices in different clusters of the graph have a “large”
commute distance.

It is because of this property that the commute distance has become a popular choice and is widely
used, for example in clustering (Yen et al., 2005), semi-supervised learning (Zhou and Schölkopf,
2004), in social network analysis (Liben-Nowell and Kleinberg, 2003), for proximity search (Sarkar
et al., 2008), in image processing (Qiu and Hancock, 2005), for dimensionality reduction (Ham
et al., 2004), for graph embedding (Guattery, 1998, Saerens et al., 2004, Qiu and Hancock, 2006,
Wittmann et al., 2009) and even for deriving learning theoretic bounds for graph labeling (Herbster
and Pontil, 2006, Cesa-Bianchi et al., 2009). One of the main contributions of this paper is to
establish that property (F) does not hold in many relevant situations.

In this paper we study how the commute distance (up to a constant factor equivalent to the resistance
distance, see below for exact definitions) behaves when the size of the graph increases. We focus on
the case of random geometric graphs as this is most relevant to machine learning, but similar results
hold for very general classes of graphs under mild assumptions. Denoting by Hij the expected
hitting time, by Cij the commute distance between two vertices vi and vj and by di the degree of
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vertex vi we prove that the hitting times and commute distances can be approximated (up to the
constant vol(G) that denotes the volume of the graph) by

1
vol(G)

Hij ≈
1
dj

and
1

vol(G)
Cij ≈

1
di

+
1
dj

.

The intuitive reason for this behavior is that if the graph is large, the random walk “gets lost” in
the sheer size of the graph. It takes so long to travel through a substantial part of the graph that by
the time the random walk comes close to its goal it has already “forgotten” where it started from.
For this reason, the hitting time Hij does not depend on the starting vertex vi any more. It only
depends on the inverse degree of the target vertex vj , which intuitively represents the likelihood that
the random walk exactly hits vj once it is in its neighborhood. In this respect it shows the same
behavior as the mean return time at j (the mean time it takes a random walk that starts at j to return
to its staring point) which is well-known to be vol(G) · 1/dj as well.

Our findings have very strong implications:

The raw commute distance is not a useful distance function on large graphs. On the negative
side, our approximation result shows that contrary to popular belief, the commute distance does not
take into account any global properties of the data, at least if the graph is “large enough”. It just
considers the local density (the degree of the vertex) at the two vertices, nothing else. The resulting
large sample commute distance dist(vi, vj) = 1/di + 1/dj is completely meaningless as a distance
on a graph. For example, all data points have the same nearest neighbor (namely, the vertex with
the largest degree), the same second-nearest neighbor (the vertex with the second-largest degree),
and so on. In particular, the main motivation to use the commute distance, Property (F), no longer
holds when the graph becomes “large enough”. Even more disappointingly, computer simulations
show that n does not even need to be very large before (F) breaks down. Often, n in the order of
1000 is already enough to make the commute distance very close to its approximation expression
(see Section 5 for details). This effect is even stronger if the dimensionality of the underlying data
space is large. Consequently, even on moderate-sized graphs, the use of the raw commute distance
as a basis for machine learning algorithms should be discouraged.

Correcting the commute distance. It has been reported in the literature that hitting times and com-
mute times can be observed to be quite small if the vertices under consideration have a high degree,
and that the spread of the commute distance values can be quite large (Liben-Nowell and Kleinberg,
2003, Brand, 2005, Yen et al., 2009). Subsequently, the authors suggested several different methods
to correct for this unpleasant behavior. In the light of our theoretical results we can see immediately
why the undesired behavior of the commute distance occurs. Moreover, we are able to analyze the
suggested corrections and prove which ones are meaningful and which ones not (see Section 4).
Based on our theory we suggest a new correction, the amplified commute distance. This is a new
distance function that is derived from the commute distance, but avoids its artifacts. This distance
function is Euclidean, making it well-suited for machine learning purposes and kernel methods.

Efficient computation of approximate commute distances. In some applications the commute
distance is not used as a distance function, but for other reasons, for example in graph sparsification
(Spielman and Srivastava, 2008) or when computing bounds on mixing or cover times (Aleliunas
et al., 1979, Chandra et al., 1989, Avin and Ercal, 2007, Cooper and Frieze, 2009) or graph labeling
(Herbster and Pontil, 2006, Cesa-Bianchi et al., 2009). To obtain the commute distance between all
points in a graph one has to compute the pseudo-inverse of the graph Laplacian matrix, an operation
of time complexity O(n3). This is prohibitive in large graphs. To circumvent the matrix inversion,
several approximations of the commute distance have been suggested in the literature (Spielman and
Srivastava, 2008, Sarkar and Moore, 2007, Brand, 2005). Our results lead to a much simpler and
well-justified way of approximating the commute distance on large random geometric graphs.

2 General setup, definitions and notation

We consider undirected, weighted graphs G = (V,E) with n vertices. We always assume that G is
connected and not bipartite. The non-negative weight matrix (adjacency matrix) is denoted by W :=
(wij)i,j=1,...,n. By di :=

∑n
j=1 wij we denote the degree of vertex vi and vol(G) :=

∑n
j=1 dj is

the volume of the graph. D denotes the diagonal matrix with diagonal entries d1, . . . , dn and is
called the degree matrix.
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Our main focus in this paper is the class of random geometric graphs as it is most relevant to machine
learning. Here we are given a sequence of points X1, . . . , Xn that has been drawn i.i.d. from some
underlying density p on Rd. These points form the vertices v1, . . . , vn of the graph. The edges in
the graph are defined such that “neighboring points” are connected: In the ε-graph we connect two
points whenever their Euclidean distance is less than or equal to ε. In the undirected, symmetric
k-nearest neighbor graph we connect vi to vj if Xi is among the k nearest neighbors of Xj or vice
versa. In the mutual k-nearest neighbor graph we connect vi to vj if Xi is among the k nearest
neighbors of Xj and vice versa. For space constraints we only discuss the case of unweighted
graphs in this paper. Our results can be carried over to weighted graphs, in particular to weighted
kNN-graphs and Gaussian similarity graphs.

Consider the natural random walk on G, that is the random walk with transition matrix P = D−1W .
The hitting time Hij is defined as the expected time it takes a random walk starting in vertex vi to
travel to vertex vj (with Hii := 0 by definition). The commute distance (also called commute time)
between vi and vj is defined as Cij := Hij + Hji. Some readers might also know the commute
distance under the name resistance distance. Here one interprets the graph as an electrical network
where the edges represent resistors. The conductance of a resistor is given by the corresponding edge
weight. The resistance distance Rij between i and j is defined as the effective resistance between
the vertices i and j in the network. It is well known that the resistance distance coincides with the
commute distance up to a constant: Cij = vol(G)·Rij . For background reading see Doyle and Snell
(1984), Klein and Randic (1993), Xiao and Gutman (2003), Fouss et al. (2006), Bollobás (1998),
Lyons and Peres (2010).

For the rest of the paper we consider a probability distribution with density p on R
d. We want to

study the behavior of the commute distance between two fixed points s and t. We will see that we
only need to study the density in a reasonably small region X ⊂ R

d that contains s and t. For
convenience, let us make the following definition.

Definition 1 (Valid region) Let p be any density on R
d, and s, t ∈ R

d be two points with
p(s), p(t) > 0. We call a connected subset X ⊂ R

d a valid region with respect to s, t and p if
the following properties are satisfied:

1. s and t are interior points of X .
2. The density on X is bounded away from 0, that is for all x ∈ X we have that p(x) ≥

pmin > 0 for some constant pmin. Assume that pmax := maxx∈X p(x) < ∞.
3. X has “bottleneck” larger than some value h > 0: the set {x ∈ X : dist(x, ∂X ) > h/2}

is connected (here ∂X denotes the topological boundary of X ).
4. The boundary of X is regular in the following sense. We assume that there exist positive

constants α > 0 and ε0 > 0 such that if ε < ε0, then for all points x ∈ ∂X we have
vol(Bε(x) ∩ X ) ≥ α vol(Bε(x)) (where vol denotes the Lebesgue volume). Essentially
this condition just excludes the situation where the boundary has arbitrarily thin spikes.

For readability reasons, we are going to state some of our main results using constants ci > 0. These
constants are independent of n and the graph connectivity parameter (ε or k, respectively) but depend
on the dimension, the geometry of X , and p. The values of all constants are determined explicitly in
the proofs. They do not coincide across different propositions. For notational convenience, we will
formulate all the following results in terms of the resistance distance. To obtain the results for the
commute distance one just has to multiply by factor vol(G).

3 Convergence of the resistance distance on random geometric graphs

In this section we present our theoretical main results for random geometric graphs. We show that
on this type of graph, the resistance distance Rij converges to the trivial limit 1/di + 1/dj . For
space constraints we only formulate these results for unweighted kNN and ε-graphs. Similar results
also hold for weighted variants of these graphs and for Gaussian similarity graphs.

Theorem 2 (Resistance distance on kNN-graphs) Fix two points Xi and Xj . Consider a valid
region X with respect to Xi and Xj with bottleneck h and density bounds pmin and pmax. Assume
that Xi and Xj have distance at least h from the boundary of X and that (k/n)1/d/2pmax ≤ h.
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Then there exist constants c1, . . . , c5 > 0 such that with probability at least 1− c1n exp(−c2k) the
resistance distance on both the symmetric and the mutual kNN-graph satisfies∣∣∣∣kRij −

(
k

di
+

k

dj

)∣∣∣∣ ≤ {
c4

1
k

(
log(n/k) + (k/n)1/3 + 1

)
if d = 3

c5
1
k if d > 3

The probability converges to 1 if n → ∞ and k/ log(n) → ∞. The rhs of the deviation bound
converges to 0 as n → ∞, if k → ∞ and k/ log(n/k) → ∞ in case d = 3, and if k → ∞ in case
d > 3. Under these conditions, if the density p is continuous and if additionally k/n → 0, then
kRij → 2 in probability.

Theorem 3 (Resistance distance on ε-graphs) Fix two points Xi and Xj . Consider a valid region
X with respect to Xi and Xj with bottleneck h and density bounds pmin and pmax. Assume that Xi

and Xj have distance at least h from the boundary of X and that ε ≤ h. Then there exist constants
c1, . . . , c6 > 0 such that with probability at least 1 − c1n exp(−c2nεd) − c3 exp(−c4nεd)/εd the
resistance distance on the ε-graph satisfies∣∣∣∣nεdRij −

(
nεd

di
+

nεd

dj

)∣∣∣∣ ≤
{

c5
log(1/ε)+ε+1

nε3 if d = 3
c6

1
nεd if d > 3

The probability converges to 1 if n → ∞ and nεd/ log(n) → ∞. The rhs of the deviation bound
converges to 0 as n → ∞, if nε3/ log(1/ε) → ∞ in case d = 3, and if nεd → ∞ in case d > 3.
Under these conditions, if the density p is continuous and if additionally ε → 0, then

nεdRij →
1

ηdp(Xi)
+

1
ηdp(Xj)

in probability.

Let us discuss the theorems en bloc. We start with a couple of technical remarks. Note that to achieve
the convergence of the resistance distance we have to rescale it appropriately (for example, in the
ε-graph we scale by a factor of nεd). Our rescaling is exactly chosen such that the limit expressions
are finite, positive values. Scaling by any other factor in terms of n, ε or k either leads to divergence
or to convergence to zero.
The convergence conditions on n and ε (or k, respectively) are the ones to be expected for random
geometric graphs. They are satisfied as soon as the degrees are of the order log(n) (for smaller
degrees, the graphs are not connected anyway, see e.g. Penrose, 1999). Hence, our results hold for
sparse as well as for dense connected random geometric graphs.
The valid region X has been introduced for technical reasons. We need to operate in such a region
in order to be able to control the behavior of the graph, e.g. the average degrees. The assumptions
on X are the standard assumptions used in the random geometric graph literature. In our setting, we
have the freedom of choosing X ⊂ R

d as we want. In order to obtain the tightest bounds one should
aim for a valid X that has a wide bottleneck and a high minimal density.

More generally, results about the convergence of the commute distance to 1/di + 1/dj can also be
proved for other kinds of graphs such as graphs with given expected degrees and even for power law
graphs, under the assumption that the minimal degree in the graph slowly increases with n. Details
are beyond the scope of this paper.

Proof outline of Theorems 2 and 3 (full proofs are presented in the supplementary material). Con-
sider two fixed vertices s and t in a connected graph and consider the graph as an electrical network
where each edge has resistance 1. By the electrical laws, resistances in series add up, that is for two
resistances R1 and R2 in series we get the overall resistance R = R1 + R2. Resistances in parallel
lines satisfy 1/R = 1/R1 + 1/R2. Now consult the situation in Figure 1. Consider the vertex s and
all edges from s to its ds neighbors. The resistance “spanned” by these ds parallel edges satisfies
1/R =

∑ds

i=1 1, that is R = 1/ds. Similarly for t. Between the neighbors of s and the ones of t there
are very many paths. It turns out that the contribution of these paths to the resistance is negligible
(essentially, we have so many wires between the two neighborhoods that electricity can flow nearly
freely). So the overall effective resistance between s and t is dominated by the edges adjacent to i
and j with contributions 1/ds + 1/dt.

Providing a clean mathematical proof for this argument is quite technical. Our proof is based on
Corollary 6 in Section IX.2 of Bollobás (1998) that states that the resistance distance beween two
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very many paths

resistance 1
edges, each with

many outgoingd tmany outgoing
edges, each with
resistance 1

ds

s t

Figure 1: Intuition for the proof of Theorems 2 and 3. See text for details.

fixed vertices s and t can be expressed as

Rst = inf
{∑

e∈E u2
e

∣∣∣ u = (ue)e∈E unit flow from s to t
}

.

To apply this theorem one has to construct a flow that spreads “as widely as possible” over the whole
graph. Counting edges and adding up resistances then leads to the desired results. Details are fiddly
and can be found in the supplementary material. ,

4 Correcting the resistance distance

Obviously, the large sample resistance distance Rij ≈ 1/di + 1/dj is completely meaningless as
a distance on a graph. The question we want to discuss in this section is whether there is a way to
correct the commute distance such that this unpleasant large sample effect does not occur. Let us
start with some references to the literature. It has been observed in several empirical studies that the
commute distances are quite small if the vertices under consideration have a high degree, and that
the spread of the commute distance values can be quite large. Our theoretical results immediately
explain this behavior: if the degrees are large, then 1/di + 1/dj is very small. And compared to the
“spread” of di, the spread of 1/di can be enormous.

Several heuristics have been suggested to solve this problem. Liben-Nowell and Kleinberg (2003)
suggest to correct the hitting times by simply multiplying by the degrees. For the commute distance,
this leads to the suggested correction of CLNK(i, j) := djHij + diHji. Even though we did
not prove it explicitly in our paper, the convergence results for the commute time also hold for
the individual hitting times. Namely, hitting time Hij can be approximated by vol(G)/dj . These
theoretical results immediately show that the correction CLNK is not useful, at least if we consider
the absolute values. For large graphs, it simply has the effect of normalizing all hitting times to
≈ 1, leading to CLNK ≈ 2. However, we believe that the ranking introduced by this distance
function still contains useful information about the data. The reason is that while the first order
terms dominate the absolute value and converge to two, the second order terms introduce some
“variation around two”, and this variation might encode the cluster structure.

Yen et al. (2009) exploit the well-known fact that the commute distance is Euclidean and its kernel
matrix coincides with the Moore-Penrose inverse L+ of the graph Laplacian matrix. The authors
now apply a sigmoid transformation to L+ and consider KYen(i, j) = 1/(1 + exp(−l+ij/σ)) for
some contant σ. The idea is that the sigmoid transformation reduces the spread of the distance (or
similarity) values. However, this is an ad-hoc approach that has the disadvantage that the resulting
“kernel” KYen is not positive definite.

A third correction has been suggested in Brand (2005). As Yen et al. (2009) he considers the kernel
matrix that corresponds to the commute distance. But instead of applying a sigmoid transformation
he centers and normalizes the kernel matrix in the feature space. This leads to the corrected kernel

KBrand(i, j) = K̄ij/
√

K̄iiK̄jj with 2K̄ij = −Rij + 1
n

∑n
k=1(Rik + Rkj)− 1

n2

∑n
k,l=1 Rkl.

One the first glance it is surprising that using the centered and normalized kernel instead of the
commute distance should make any difference. However, whenever one takes a Euclidean distance
function of the form dist(i, j) = sij + ui + uj − 2δijui and computes the corresponding centered
kernel matrix, one obtains

Kij = Ks
ij + 2δijui −

2
n

(ui + uj) +
2
n2

n∑
r=1

ur, (1)
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where Ks is the kernel matrix induced by s. Thus the off-diagonal terms are still influenced by ui

but with a decaying factor 1
n compared to the diagonal. Even though this is no longer the case after

normalization (because for the normalization the diagonal terms are important, and these terms still
depend on the di), we believe that this is the key to why Brand’s kernel is useful.

What would be a suitable correction based on our theoretical results? The proof of our main the-
orems shows that the edges adjacent to i and j completely dominate the behavior of the resistance
distance: they are the “bottleneck” of the flow, and their contribution 1/di + 1/dj dominates all
the other terms. The interesting information about the global topology of the graph is contained
in the remainder terms Sij = Rij − 1/di − 1/dj , which summarize the flow contributions of all
other edges in the graph. We believe that the key to obtaining a good distance function is to remove
the influence of the 1/di terms and “amplify” the influence of the general graph term Sij . This
can be achieved by either using the off-diagonal terms of the pseudo-inverse graph Laplacian L†

while ignoring its diagonal, or by building a distance function based on the remainder terms Sij

directly. We choose the second option and propose the following new distance function. We define
the amplified commute distance as Camp(i, j) = Sij + uij with Sij = Rij − 1/di − 1/dj and
uij = 2wij/didj − wii/d2

i − wjj/d2
j . Of course we set Camp(i, i) = 0 for all i.

Proposition 4 (Amplified commute distance is Euclidean) The matrix D with entries dij =
Camp(i, j)1/2 is a Euclidean distance matrix.
Proof outline. In preliminary work we show that the remainder terms can be written as Sij =
〈(ei− ej), B(ei− ej)〉−uij where ei denotes the i-th unit vector and B is a positive definite matrix
(see the proof of Proposition 2 in von Luxburg et al., 2010). This implies the desired statement. ,

Additionally to being a Euclidean distance, the amplified commute distance has a nice limit behavior.
When n →∞ the terms uij are dominated by the terms Sij , hence all that is left are the “interesting
terms” Sij . For all practical purposes, one should use the kernel induced by the amplified commute
distance and center and normalize it. In formulas, the amplified commute kernel is

Kamp(i, j) := K̄ij/
√

K̄iiK̄jj with K̄ = (I − 1
n
11

′)Camp(I −
1
n
11

′) (2)

(where I is the identity matrix, 1 the vector of all ones, and Camp the amplified commute distance
matrix). The next section shows that the kernel Kamp works very nicely in practice.

Note that the correction by Brand and our amplified commute kernel are very similar, but not identi-
cal with each other. The off-diagonal terms of both kernels are very close to each other, see Equation
(1), that is if one is only interested in a ranking based on similarity values, both kernels behave simi-
larly. However, an important difference is that the diagonal terms in the Brand kernel are way bigger
than the ones in the amplified kernel (using our convergence techniques one can show that the Brand
kernel converges to an identity matrix, that is the diagonal completely dominates the off-diagonal
terms). This might lead to the effect that the Brand kernel behaves worse than our kernel with
algorithms like the SVM that do not ignore the diagonal of the kernel.

5 Experiments

Our first set of experiments considers the question how fast the convergence of the commute distance
takes place in practice. We will see that already for relatively small data sets, a very good approx-
imation takes place. This means that the problems of the raw commute distance already occur for
small sample size. Consider the plots in Figure 2. They report the maximal relative error defined as
maxij |Rij−1/di−1/dj |/Rij and the corresponding mean relative error on a log10-scale. We show
the results for ε-graphs, unweighted kNN graphs and Gaussian similarity graphs (fully connected
weighted graphs with edge weights exp(‖xi − xj‖2/σ2)). In order to be able to plot all results in
the same figure, we need to match the parameters of the different graphs. Given some value k for
the kNN-graph we thus set the values of ε for the ε-graph and σ for the Gaussian graph to be equal
to the maximal k-nearest neighbor distance in the data set.

Sample size. Consider a set of points drawn from the uniform distribution on the unit cube in R10.
As can be seen in Figure 2 (first plot), the maximal relative error decreases very fast with increasing
sample size. Note that already for small sample sizes the maximal deviations get very small.
Dimension. A result that seems surprising at first glance is that the maximal deviation decreases
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Figure 2: Relative deviations between true and approximate commute distances. Solid lines show
the maximal relative deviations, dashed lines the mean relative deviations. See text for details.

as we increase the dimension, see Figure 2 (second plot). The intuitive explanation is that in higher
dimensions, geometric graphs mix faster as there exist more “shortcuts” between the two sides of
the point cloud. Thus, the random walk “forgets faster” where it started from.
Clusteredness. The deviation gets worse if the data has a more pronounced cluster structure. Con-
sider a mixture of two Gaussians in R10 with unit variances and the same weight on both compo-
nents. We call the distance between the centers of the two components the separation. In Figure 2
(third plot) we show both the maximum relative errors (solid lines) and mean relative errors (dashed
lines). We can clearly see that with increasing separation, the deviation increases.
Sparsity. The last plot of Figure 2 shows the relative errors for increasingly dense graphs, namely
for increasing parameter k. Here we used the well-known USPS data set of handwritten digits (9298
points in 256 dimensions). We plot both the maximum relative errors (solid lines) and mean relative
errors (dashed lines). We can see that the errors decrease the denser the graph gets. Again this is
due to the fact that the random walk mixes faster on denser graphs. Note that the deviations are
extremely small on this real-world data set.

In a second set of experiments we compare the different corrections of the raw commute distance. To
this end, we built a kNN graph of the whole USPS data set (all 9298 points, k = 10), computed the
commute distance matrix and the various corrections. The resulting matrices are shown in Figure
3 (left part) as heat plots. In all cases, we only plot the off-diagonal terms. We can see that as
predicted by theory, the raw commute distance does not identify the cluster structure. However, the
cluster structure is still visible in the kernel corresponding to the commute distance, the pseudo-
inverse graph Laplacian L†. The reason is that the diagonal of this matrix can be approximated by
(1/d1, ...., 1/dn), whereas the off-diagonal terms encode the graph structure, but on a much smaller
scale than the diagonal. In our heat plots, all four corrections of the graph Laplacian show the cluster
structure to a certain extent (the correction by LNK to a small extent, the corrections by Brand, Yen
and us to a bigger extent).

A last experiment evaluates the performance of the different distances in a semi-supervised learning
task. On the whole USPS data set, we first chose some random points to be labeled. Then
we classified the unlabeled points by the k-nearest neighbor classifier based on the distances
to the labeled data points. For each classifier, k was chosen by 10-fold cross-validation among
k ∈ {1, ..., 10}. The experiment was repeated 10 times. The mean results can be seen in Figure 3
(right figure). As baseline we also report results based on the standard Euclidean distance between
the data points. As predicted by theory, we can see that the raw commute distance performs
extremely poor. The Euclidean distance behaves reasonably, but is outperformed by all corrections
of the commute distance. This shows first of all that using the graph structure does help over the
basic Euclidean distance. While the naive correction by LNK stays close to the Euclidean distance,
the three corrections by Brand, Yen and us virtually lie on top of each other and outperform the
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Figure 3: Figures on the left: Distances and kernels based on a kNN graph between all 9298 USPS
points (heat plots, off-diagonal terms only): exact resistance distance, pseudo-inverse graph Lapla-
cian L†; kernels corresponding to the corrections by LNK, Yen, Brand, and our amplified Kamp.
Figure on the right: Semi-supervised learning results based on the different distances and kernels.
The last three lines corresponding to the amplified, Brand and Yen kernel lie on top of each other.

other methods by a large margin.

We conclude with the following tentative statements. We believe that the correction by LNK is “a bit
too naive”, whereas the corrections by Brand, Yen and us “tend to work” in a ranking based setting.
Based on our simple experiments it is impossible to judge which out of these candidates is “the best
one”. We are not too fond of Yen’s correction because it does not lead to a proper kernel. Both
Brand’s and our kernel converge to (different) limit functions. So far we do not know the theoretical
properties of these limit functions and thus cannot present any theoretical reason to prefer one over
the other. However, we think that the diagonal dominance of the Brand kernel can be problematic.

6 Discussion

In this paper we have proved that the commute distance on random geometric graphs can be
approximated by a very simple limit expression. Contrary to intuition, this limit expression no
longer takes into account the cluster structure of the graph, nor any other global property (such as
distances in the underlying Euclidean space). Both our theoretical bounds and our simulations tell
the same story: the approximation gets better if the data is high-dimensional and not extremely
clustered, both of which are standard situations in machine learning. This shows that the use of the
raw commute distance for machine learning purposes can be problematic. However, the structure
of the graph can be recovered by certain corrections of the commute distance. We suggest to use
either the correction by Brand (2005) or our own amplified commute kernel from Section 4. Both
corrections have a well-defined, non-trivial limit and perform well in experiments.

The intuitive explanation for our result is that as the sample size increases, the random walk on the
sample graph “gets lost” in the sheer size of the graph. It takes so long to travel through a substantial
part of the graph that by the time the random walk comes close to its goal it has already “forgotten”
where it started from. Stated differently: the random walk on the graph has mixed before it hits the
desired target vertex. On a higher level, we expect that the problem of “getting lost” not only affects
the commute distance, but many other methods where random walks are used in a naive way to
explore global properties of a graph. For example, the results in Nadler et al. (2009), where artifacts
of semi-supervised learning in the context of many unlabeled points are studied, seem strongly
related to our results. In general, we believe that one has to be particularly careful when using
random walk based methods for extracting global properties of graphs in order to avoid getting lost
and converging to meaningless results.
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This supplement is devoted to the proof of our main results: Theorems 2 and 3 of the main paper. For
convenience, we formulate all proofs in terms of the effective resistance between two vertices. To
convert effective resistance to the commute distance, one just has to multiply by the factor vol(G).
We rely on the notation that has been introduced in our main paper.

1 Lower bound on the resistance distance for arbitrary graphs

It is easy to prove that the resistance distance between two points is lower bounded by the sum of
the inverse degrees.

Proposition 4 (Lower bound) Let G be a weighted, undirected, connected graph and consider two
vertices s and t, s 6= t. Assume that G remains connected if we remove s and t. Then the effective
resistance between s and t is bounded by

Rst ≥
Qst

1 + wstQst

where Qst = 1/(ds − wst) + 1/(dt − wst). Note that if s and t are not connected by a direct edge
(that is, wst = 0), then the rhs simplifies to 1/ds + 1/dt.

Proof. The proof is based on Rayleigh’s monotonicity principle that states that increasing edge
weights in the graph can never increase the effective resistance between two vertices (cf. Corollary
7 in Section IX.2 of Bollobás, 1998). Given our original graph G, we build a new graph G′ by
setting the weight of all edges to infinity, except the edges that are adjacent to s or t (setting the
weight of an edge to infinity means that this edge has no resistance any more). This can also be
interpreted as taking all vertices except s and t and merging them to one super-node a. Now our
graph G′ consists of three vertices s, a, t, with several parallel edges from s to a, several parallel
edges from a to t. Exploiting the laws in electrical networks (resistances add along edges in series,
conductances add along edges in parallel; see Section 2.3 in Lyons and Peres (2010) for detailed
instructions and examples) leads to the desired result. ,
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2 Upper bound on the resistance in deterministic geometric graphs

This is the part that requires the hard work. Our proof is based on a theorem that shows how the
resistance between two points in the graph can be computed in terms of flows on the graph. The
following result is taken from Corollary 6 in Section IX.2 of Bollobás (1998).

Theorem 5 (Resistance in terms of flows, cf. Bollobás, 1998) Let G = (V,E) be an unweighted
graph. The effective resistance Rst between two fixed vertices s and t can be expressed as

Rst = inf

{∑
e∈E

u2
e

∣∣∣ u = (ue)e∈E unit flow from s to t

}
. (1)

Note that evaluating the formula in the above theorem for any fixed flow leads to an upper bound
on the effective resistance. The key to obtaining a tight bound is to distribute the flow as widely and
uniformly over the graph as possible.

For the case of geometric graphs (that is, graphs whose vertices correspond to points in some un-
derlying space Rd), we are going to use a grid on the underlying space to construct an efficient flow
between two vertices. Let X1, ..., Xn be a fixed set of points in Rd and consider a geometric graph
G with vertices X1, ..., Xn. Fix any two of them, say s := X1 and t := X2. Let X ⊂ R

d be a
connected set that contains both s and t. Consider a regular grid with grid width g on X . We say
that grid cells are neighbors of each other if they touch each other in at least one point.

Definition 6 (Valid grid) We call the grid valid if the following properties are satisfied:

1. Each cell of the grid contains at least one of the points X1, ..., Xn.

2. Points in the same or neighboring cells of the grid are always connected in the graph G.

3. The grid width g is small enough: Define the bottleneck h of the region X (see Definition
1 in the main paper) as the largest u such that the set {x ∈ X

∣∣ dist(x, ∂X ) > u/2} is
connected. We require that there exists a piecewise linear path between s and t which has
distance at least h/2 from ∂X . Denote the length of this path by d(s, t). We require that√

d− 1g ≤ h (a cube of side length g should fit in the bottleneck) and d(s, t) > 4
√

d− 1g
(the grid should be small enough such that the cubes containing s and t do not overlap).

Below we construct a flow from s to t with the help of the underlying grid. The main idea is to first
distribute the flow from s to all points in the grid cell C(s) that contains s. Then we follow a path
of grid cells that goes from the cell C(s) to the corresponding cell of C(t), and in the last step we
go to t itself.

At this point note a general concept that we will use over and over again. Assume we have N1

points in grid cell C1 and N2 points in grid cell C2, and assume that C1 and C2 are neighboring
cells. Then, if the grid is valid, all points in C1 are connected to all points in C2, that is we have
N1N2 different edges between the two cells.

We now prove the following general proposition that gives an upper bound on the resistance distance
between vertices in a fixed geometric graph.

Proposition 7 (Resistance on a fixed geometric graph) Consider a fixed set of points X1, ..., Xn

in some connected region X ⊂ R
d with bottleneck h (where the bottleneck is defined as in the

definition of a valid region in the main paper). Denote s = X1 and t = X2. Assume that s and t
have distance at least h/2 from ∂X . Let d(s, t) be be the length of a piecewise linear path between
s and t which has distance at least h/2 from ∂X . Consider a geometric graph on X1, ..., Xn and
let g be the width of a valid grid on X . By Nmin denote the minimal number of points in each grid
cell, and define a as

a :=
⌊
h/(2g

√
d− 1)

⌋
. (2)
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Then the effective resistance between s and t can be bounded as follows:

Rst ≤
1
ds

+
1
dt

+
1

Nmin

(
1
ds

+
1
dt

)
+


1

N2
min

(
1

d−1 (log(a) + 1) + 2d(s,t)
g(2a−1)d−1

)
if d = 3

1
N2

min

(
2

d−1 + 2d(s,t)
g(2a−1)d−1

)
if d > 3

(3)

The actual proof is rather lengthy and a bit tedious. The rest of this section is devoted to it.

Construction of the flow — overview.

Without loss of generality we assume that there exists a straight line connecting s and t which is
along the first dimension of the space.

Step 0: We start a unit flow in vertex s.

Step 1: We make a step to all neighbors Neigh(s) of s and distribute the flow uniformly over all
edges. That is, we traverse ds edges and send flow 1/ds over each edge.

Step 2: In one step we distribute the flow from the points in Neigh(s) uniformly to all points in the
grid cell C(s) that contains s. This is necessary as some of the neighbors of s are outside
of C(s), and for the next step we need that all flow sits in cell C(s).

Step 3: We now distribute the flow from C(s) to a larger region, namely to a (d−1)-dim hypercube
H(s) of side length h that is perpendicular to the linear path from s to t and centered at
C(s), see left plot of Figure 1. This can be achieved in several substeps that will be defined
below.

Step 4: We now traverse from H(s) to an analogous hypercube H(t) located at t using parallel
paths, see right plot of Figure 1.

Step 5: From the hypercube H(t) we send the flow to the neighborhood Neigh(t) (this is the “re-
verse” of steps 2 and 3).

Step 6: From Neigh(t) we finally send the flow to the destination t (“reverse” of step 1).

Details of the flow construction and computation of the resistance beween s and t.

We now describe the individual steps and their contribution to the bound on the resistance. By
the “contribution of a step” we mean the part of the sum in Theorem 5 that goes over the edges
considered in the current step.

Step 1 We start with a unit flow at s that we send over all ds adjacent edges. This leads to flow 1/ds

over ds edges. According to the formula in Theorem 5 this contributes

r1 = ds ·
1
d2

s

=
1
ds

Layer 2

Layer 1

s
C(s) = Layer 0 s t

Figure 1: Left plot: front view of a (d − 1)-dimensional hypercube with three layers, d = 3. Right
plot: step 3 of the flow, d = 3.
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to the overall resistance Rst.

Step 2: We now redistribute all flow from the neighbors of s to all points in the cell C(s). We want
to use as many edges as possible in this step. In our graph, all neighbors of s are connected to all
points in C(s) by construction. We now distribute the flow of each of the neighbors of s uniformly
to all points in C(s). That is, we use at least dsNmin edges to distribute our flow, that is each edge
gets flow at most 1/(dsNmin). This leads to a contribution of

r2 = dsNmin

(
1

dsNmin

)2

=
1

dsNmin

Step 3: To distribute the flow to the whole hypercube we divide the hypercube into layers. Layer
0 consists of the cell C(s) itself, the first layer consists of all cells adjacent to C(s), and so on (see
Figure 1, left plot). Layer i has side length (2i + 1)g. The number li of grid cells in Layer i, i ≥ 1,
can be lower bounded by

li ≥ 2(d− 1)(2i− 1)d−2.

All in all we consider a =
⌊
h/(2g

√
d− 1)

⌋
≤

⌊
h/(2(g − 1)

√
d− 1)

⌋
layers, so that the final layer

has diameter just a bit smaller than the bottleneck h. We now distribute the flow stepwise through
all layers, starting with unit flow in Layer 0.

To send the flow from Layer i − 1 to Layer i we want to use as many edges as possible. We can
lower bound the number of edges between these two layers by liN

2
min: each of the li cells in Layer

i is adjacent to at least one of the cells in Layer i − 1, and each cell contains at least Nmin points.
Consequently, we can upper bound the contribution of the edges between Layer i and i − 1 to the
resistance by

r3,i ≤ liN
2
min ·

(
1

liN2
min

)2

=
1

liN2
min

.

All in all we have a layers. Thus the overall contribution of Step 3 to the resistance can be bounded
by

r3 =
a∑

i=1

r3,i ≤
1

N2
min

a∑
i=1

1
li

.

Using the bounds on the li and assumption d ≥ 3 we get

r3 ≤
1

N2
min

a∑
i=1

1
li

=
1

2(d− 1)N2
min

a∑
i=1

1
(2i− 1)d−2

≤ 1
2(d− 1)N2

min

2a∑
i=1

1
(i)d−2

In case d = 3, the sum on the right hand side is the finite harmonic series and is upper bounded by
log(a)+1. If d > 3, the over-harmonic series on the right hand side converges to a constant smaller
than 2. All in all we get
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r3 ≤

{
1

2(d−1)N2
min

(log(a) + 1) if d = 3
1

2(d−1)N2
min

if d > 3

Step 4: Now we transfer all flow in “parallel cell paths” from H(s) to H(t). We have (2a− 1)d−1

parallel rows of cells going from H(s) to H(t), each of them contains d(s, t)/g cells. Thus all in
all we traverse (2a− 1)d−1N2

mind(s, t)/g edges, and each edge carries flow 1/((2a− 1)d−1N2
min).

Thus step 4 contributes

r4 ≤ (2a− 1)d−1N2
min

d(s, t)
g

·
(

1
(2a− 1)d−1N2

min

)2

=
d(s, t)

g(2a− 1)d−1N2
min

Step 5 is completely analogous to steps 2 and 3, with the analogous contribution r5 = 1
dtNmin

+ r3.

Step 6 is completely analogous to step 1 with overall contribution of r6 = 1/dt.

Summing up all these contributions leads to the following overall bound on the resistance:

Rst ≤
1
ds

+
1
dt

+
1

Nmin

(
1
ds

+
1
dt

)
+


1

N2
min

(
1

d−1 (log(a) + 1) + 2d(s,t)
g(2a−1)d−1

)
if d = 3

1
N2

min

(
2

d−1 + 2d(s,t)
g(2a−1)d−1

)
if d > 3

with a as defined in Eq. (2). This concludes the proof of Proposition 7. ,

Let us make a couple of technical remarks about this proof. For the ease of presentation we simpli-
fied the proof in a couple of respects.

Strictly speaking, we do not need to distribute the whole unit flow to the outmost Layer a. The reason
is that in each layer, a fraction of the flow already “branches off” in direction of t. We simply ignore
this leaving flow when bounding the flow in Step 2, our construction leads to an upper bound. It is
not so difficult to take the outbound flow into account, but it does not change the order of magnitude
of the final result. So for the ease of presentation we drop this additional complication and stick to
our rough upper bound.

When we consider Step 2 and the first couple of layers in Step 3 together, it turns out that some
edges are used twice and might lead to “loops” in the flow. To ensure that we have a proper flow
these loops could be removed. This would then just reduce the contribution of Steps 2 and 3, so that
our current estimate is an overestimation of the whole resistance.

In step 3 one has to take care that the flow is always uniformly distributed in each layer, that is
each grid cell of the layer gets the same amount of flow. The easiest way to achieve this is to
introduce a “redistribution phase” for each layer. In this phase, the arriving flow from Layer i− 1 is
redistributed in Layer i to achieve a uniform distribution. We omitted this step for simplicity, but it
does not change the final result apart from constants depending on the dimension.

The proof as it is spelled out above considers the case where s and t are connected by a straight line.
It can be generalized to the case where they are connected by a piecewise linear path. This does not
change the result in the end, but adds some technicality at the corners of the paths.

The construction of the flow only works if the bottleneck of X is not smaller than the diameter of
one grid cell, if s and t are at least a couple of grid cells apart from each other, and if s and t are not
too close to the boundary of X . We took care of these conditions in Part 3 of the definition of a valid
grid.

3 General properties of random geometric graphs

In this subsection we prove some basic results on random geometric graphs. These results are
well-known in the random geometric graph community, but not so much in the machine learning
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community. Unfortunately, we did not find any reference where the material is presented in the
way we need it (often the results are used implicitly or are tailored towards particular applications).
Hence we present the proofs in this section. We encourage the reader to skip this section for the first
reading, it is meant as a reference.

In the following, assume that X is a valid region according to Definition 1. Given any probability
density p on Rd, we now restrict the density to the region X .

An important tool for dealing with random geometric graphs is the following well-known concentra-
tion inequality for binomial random variables that has first appeared in Angluin and Valiant (1977).

Proposition 8 (Concentration inequalities) Let N be a Bin(n, p)-distributed random variable.
Then, for all δ ∈]0, 1],

P
(
N ≤ (1− δ)np

)
≤ exp(−1

3
δ2np)

P
(
N ≥ (1 + δ)np

)
≤ exp(−1

3
δ2np).

We will see below that computing expected, minimum and maximum degrees in random geometric
graphs always boils down to counting the number of data points in certain balls in the space. The
following proposition is a straightforward application of the concentration inequality above and
serves as “template” for all later proofs.

Proposition 9 (Counting sample points) Consider a sample X1, . . . , Xn drawn i.i.d. according
to density p on X . Let B1, . . . , BK be a fixed collection of subsets of X (the Bi do not need to
be disjoint). Denote by bmin := mini=1,...,K

∫
Bi

p(x)dx the minimal probability mass of the sets
Bi (similarly by bmax the maximal probability mass), and by Nmin and Nmax the minimal (resp.
maximal) number of sample points in the sets Bi. Then for all δ ∈]0, 1]

P
(
Nmax ≥ (1 + δ)nbmax

)
≤ K · exp(−δ2nbmax/3)

P
(
Nmin ≤ (1− δ)nbmin

)
≤ K · exp(−δ2nbmin/3).

Proof. This is a straightforward application of Proposition 8 using the union bound. ,

When working with ε-graphs or kNN-graphs, we often need to know the degrees of the vertices. As
a rule of thumb, the expected degree of a vertex in the ε-graph is of the order Θ(nεd), the expected
degree of a vertex in both the symmetric and mutual kNN graph is of the order Θ(k). The expected
kNN-distance is of the order Θ((k/n)1/d). All these rules of thumb also apply to the minimal and
maximal values of these quantities in the graph, provided the graph is “sufficiently connected”. The
following propositions make these rules of thumb explicit.

Proposition 10 (Degrees in the ε-graph) Consider an ε-graph on a valid region X ⊂ R
d.

1. Then, for all δ ∈]0, 1], the minimal and maximal degrees in the ε-graph satisfy

P
(
dmax ≥ (1 + δ)nεdpmaxηd

)
≤ n · exp(−δ2nεdpmaxηd/3)

P
(
dmin ≤ (1− δ)nεdpminηdα

)
≤ n · exp(−δ2nεdpminηdα/3).

In particular, if nεd/ log n →∞, then these probabilities converge to 0 as n →∞.

2. If n → ∞, ε → 0 and nεd/ log n → ∞, and the density p is continuous, then for each
interior point Xi ∈ X the degree is a consistent density estimate: di/(nεdηd) −→ p(Xi)
a.s.

Proof. Part 1 follows by applying Proposition 9 to the balls of radius ε centered at the data points.
Note that for the bound on dmin, we need to take into account boundary effects as only a part of the
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ε-ball around a boundary point is contained in X . This is where the constant α comes in (recall
the definition of α from the definition of a valid region). Part 2 is a standard density estimation
argument: the expected degree of Xi is the expected number of points in the ε-ball around Xi.
For ε small enough, the density is approximately constant in this ball because we assumed the
density to be continous. Then the expected number of points is approximately nεdηdp(Xi) where
ηd denotes the volume of a d-dimensional unit ball. By concentration arguments it is easy to see
that the actual number of points is close to this expectation, and that convergence holds under the
conditions stated. ,

Recall the definitions of the k-nearest neighbor radii: Rk(x) denotes the distance of x to its k-
nearest neighbor among the Xi, and the maximum and minimum values are denoted Rk,max :=
maxi=1,...,n Rk(Xi) and Rk,min := maxi=1,...,n Rk(Xi).

Proposition 11 (Degrees in the kNN-graph) Consider a valid region X ⊂ R
d.

1. With probability at least 1− n exp(−c1k) the minimal and maximal kNN-radii satisfy

Rk,min ≥ c2(k/n)1/d and Rk,max ≤ c3(k/n)1/d.

2. Moreover, with probability at least 1 − n exp(−c4k) the minimal and maximal degree in
both the symmetric and mutual kNN graph are of the order Θ(k) (the constants differ).

3. If the density is continuous, n → ∞, k/n → 0 and k/ log n → ∞, then in both the
symmetric and the mutual kNN graph, k/di → 1.

Proof. Part 1. Define the constant a = 1/(2pmax) and the radius r := a (k/n)1/d, fix a
sample point x, and denote by µ the probability mass of the ball around x with radius r. Set
µmax := rdηdpmax ≥ maxx∈X µ. Note that if k/n is small enough, then µmax < 1. The main idea
is that Rk(x) ≤ r if and only if there are at least k data points in the ball of radius r around x. Let
M ∼ Bin(n, µ) and V ∼ Bin(n, µmax). Note that by the choices of a and r we have E(V ) = k/2.
All this leads to

P
(
Rk(x) ≤ r

)
≤ P

(
M ≥ k

)
≤ P

(
V ≥ k

)
= P

(
V ≥ 2E(V )

)
.

Applying the concentration inequality of Proposition 8 and using a union bound leads to the follow-
ing result for the minimal kNN radius:

P
(
Rk,min ≤ a

(
k

n

)1/d )
≤ n exp(−k/6).

By a similar approach we can prove the analogous statement for the maximal kNN radius. Note that
for the bound on Rk,max we additionally need to take into account boundary effects: at the boundary
of X , only part of the ball around a point is contained in X , which affects the value of µmin. We
thus define µmin = rdηdpminα where α is the constant defined in the general assumptions. Then we
continue similarly to above and get

P
(
Rk,max ≥ ã

(
k

n

)1/d )
≤ n exp(−k/6).

Part 2. In the directed kNN graph, the degree of each vertex is exactly k. Thus, in the mutual kNN
graph, the maximum degree over all vertices is upper bounded by k, in the symmetric kNN graph
the minimum degree over all vertices is lower bounded by k.

For the symmetric graph, observe that the maximal degree in the graph is bounded by the maximal
number of points in the balls of radius Rk,max centered at the data points. We know that with high
probability, a ball of radius Rk,max contains of the order Θ(nRd

k,max) points. Using Part 1 we
know that with high probability, Rk,max is of the order (k/n)1/d. Thus the maximal degree in the
symmetric kNN graph is of the order Θ(k), with high probability.
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In the mutual graph, observe that the minimal degree in the graph is bounded by the minimal number
of points in the balls of radius Rk,min centered at the data points. Then the statement follows
analogously to the last one.

Part 3, proof sketch. Consider a fixed point x in the interior of X . We know that both in the
symmetric and mutual kNN graph, two points cannot be connected if their distance is larger than
Rk,max. As we know that Rk,max is of the order (k/n)1/d, under the growth conditions on n
and k this radius becomes arbitrarily small. Thus, because of the continuity of the density, if n is
large enough we can assume that the density in the ball B(x,Rk,max) of radius Rk,max around x is
approximately constant. Thus, all points y ∈ B(x,Rk,max) have approximately the same expected
k-nearest neighbor radius R := (k/(n · p(x)ηd))1/d. Moreover, by concentration arguments it is
easy to see that the actual kNN radii only deviate by a factor 1± δ from their expected values.

Then, with high probability, all points inside of B(x,R(1 − δ)) are among the k nearest neighbors
of x, and all k nearest neighbors of x are inside B(x,R(1 + δ)). On the other hand, with high
probability x is among the k nearest neighbors of all points y ∈ B(x,R(1 − δ)), and not among
the k nearest neighbors of any point outside of B(x,R(1 + δ)). Hence, in the mutual kNN graph,
with high probability x is connected exactly to all points y ∈ B(x,R(1 − δ)). In the symmetric
kNN graph, x might additionally be connected to the points in B(x,R(1 + δ)) \ B(x,R(1 − δ)).
By construction, with high probability the number of sample points in these balls is (1 + δ)k and
(1− δ)k. Driving δ to 0 leads to the result. ,

4 Finally completing the proof of Theorems 2 and 3

First of all, note that by Rayleigh’s principle (cf. Corollary 7 in Section IX.2 of Bollobás, 1998) the
effective resistance between vertices cannot decrease if we delete edges from the graph. So given
a sample from the underlying density p, some random geometric graph based on this sample, and
some valid region X , we first delete all points that are not in X . Then we consider the remaining
geometric graph. The effective resistances on this graph are upper bounds on the resistances of the
original graph. Then we conclude the proofs with the following arguments:

Proof of Theorem 3. The lower bound on the deviation follows immediately from Proposition 4.
The upper bound is a consequence of Proposition 7 and the properties of random geometric graphs
presented above. In particular, note that we can choose the grid width g := ε

2
√

d−1
to obtain a

valid grid. The quantity Nmin can be bounded as stated in Proposition 9 and the degrees behave
as described in Proposition 10 (we use δ = 1/2 in these results for simplicity). Plugging all these
results together leads to the following statement:

∣∣∣∣nεdRij −
(

nεd

di
+

nεd

dj

)∣∣∣∣
≤ 2d+2(d− 1)d/2

p2
minηdα

· 1
nεd

+


22d+2(d−1)d

p2
min

· 1
nεd

(
log(h/ε)+1

d−1 +
√

d−1 d(s,t)
2d−3hd−1 · εd−2

)
if d = 3

22d+2(d−1)d

p2
min

· 1
nεd

(
2

d−1 +
√

d−1 d(s,t)
2d−3hd−1 · εd−2

)
if d > 3

≈

{
c5

1+log(1/ε)+ε
nε3 if d = 3

c6
1

nεd if d > 3

,

The constants in this result look terrible with respect to the dimension d. However, we believe that
this is due to the fact that our setup is an unfortunate mix between balls and cubes (the constants
come from the fact that we have to ensure that the diagonals of cubes still fit into certain balls). We
hope to tidy up the proof in future and provide better constants. The same goes for the next result
which we prove now.

Proof of Theorem 2. This proof is completely analogous to the ε-graph. As grid width g we choose
g = Rk,min/(2

√
d− 1) where Rk,min is the minimal k-nearest neighbor distance (note that this
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works for both the symmetric and the mutual kNN-graph). Then the statements of the theorem
follow by combining Propositions 7, 9 and 11 (by c := 1/(2pmax) we denote the constant hidden in
the O-notation of Proposition 11 for Rk,min). The result is

∣∣∣∣kRij −
(

k

di
+

k

dj

)∣∣∣∣
≤ 2d+2(d− 1)d/2

p2
min c cd

· 1
k

+


22d+2(d−1)d

p2
minc2d · 1

k

(
log(h/(c(k/n)1/d)+1

d−1 +
√

d−1 d(s,t)cd−2

2d−3hd−1 · (k/n)(d−2)/d
)

if d = 3
22d+2(d−1)d

p2
minc2d · 1

k

(
2

d−1 +
√

d−1 d(s,t)cd−2

2d−3hd−1 · (k/n)(d−2)/d
)

if d > 3

≈
{

c4
1
k

(
1 + log(n/k) + (k/n)1/3

)
if d = 3

c5
1
k if d > 3

,
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