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Abstract

This paper contains supplementary material to the paper “Consistent Minimization of
Clustering Objective Functions”, published at NIPS 2007 (von Luxburg et al., to appear).
In particular, this supplement contains detailed proofs of all the theorems. For the gen-
eral background please see von Luxburg et al. (to appear). An extended version which
combines most of the NIPS paper and this supplement, and contains more general re-
sults and a more elegant approach to the proofs is available as a preprint (Bubeck and
von Luxburg, 2007). For readers who are interested in our results in general we suggest
to read the preprint (Bubeck and von Luxburg, 2007) rather than this supplement. Read-
ers who want to see the proofs of the theorems exactly as they have been formulated in
the NIPS paper (von Luxburg et al., to appear) should read this supplement.

1 General setup and notation

Intuitively, a clustering should discover “meaningful” groups. As we think that those groups should be
“connected” in some sense, we will only consider clusterings which are continuous in a certain sense.
More formally, we represent a clustering of X by a function from X to {1, . . . ,K} which is almost surely
(with respect to P) continuous. We will always fix the number K of clusters (and we will not touch the
question of what “the best K” is). Given a certain clustering quality function Q, the goal of clustering
is to find a function which minimizes Q. To be as general as possible we also allow for the possibility
that one has additional constraints on the clustering solution. For example, on could imagine to only
look for clusters which have a certain “minimal size”. We will express such additional constraints by
introducing a “predicate” A(f), that is A denotes a property of the function which can be either “true” or
“false”. The “true clustering” f∗ is then defined as a function f which has minimal value Q(f) among all
functions which are continuous almost everywhere and satisfy A(f). Given a finite sample, we now want
to approximate this true clustering. As we do not know P in this setting, we can neither evaluate Q nor A.
Instead, we introduce approximations Qn(f) and An(f) of the two quantities. Moreover, according to the
discussion above we need to restrict the space of functions to some space Fn. The empirical clustering fn

is then defined as the function which has minimal value Qn(f) among all functions which are in Fn and
satisfy An(f).

In the following we always assume that the underlying space is X = Rd, endowed with the Euclidean
distance. We will use the following notations and abbreviations :
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d dimension of the space Rd;
n number of sample points;
X1, . . . , Xn sample points drawn i.i.d from P;
m := m(n) ≤ n number of seeds used in the nearest neighbor operation. This number

m(n) will depend on n, but for readability reasons we will drop the
argument in the following and simply write m instead;

K number of clusters to construct;
NNm(x) is the nearest neighbor of x among X1, . . . , Xn according to the eu-

clidean distance;
B(x, δ) the ball around x with radius δ
H is the space of all functions from Rd to {1, . . . ,K};
A : H → {True, False} is a predicate, that is a certain property of a function which can be true

or false. If f is a data dependent function then we define P(A(f)) :=
P({A(f) = True}) and P(A(f)c) := P({A(f) = False})

An : H× (Rd)n → {True, False} is a predicate depending on the function and the data points. Through
the paper we will only be interested in An(f,X1, . . . , Xn) and we will
write it An(f). We define P(An(f)) := P({An(f) = True}) and
P(An(f)c) := P({An(f) = False}).

Q : H → R+ the true clustering quality function (usually depends on P)
Qn : H → R+ the empirical clustering quality function which can be computed on the

finite sample

For given properties A(f) and An(f) we will consider the following function spaces :

F := {f : Rd → {1, . . . ,K} | f continuous almost everywhere, f satisfies A(f)}
Fn := {f : Rd → {1, . . . ,K} | f satisfies f(x) = f(NNm(x)) and An(f)}

F̃n :=
⋃

X1,...,Xn∈Rd

Fn

F̂n := {f : Rd → {1, . . . ,K} | ∃ Voronoi partition of m cells: f constant on all cells}

We will endow all function spaces with the pseudo-distance

d(f, g) := P(f(X) 6= g(X) | X1, . . . , Xn)

Note that we need the conditioning in case f or g are data dependent. The conditioning has no effect if this
is not the case.

Given all the quantities mentioned above, we define the true and the empirical clusterings as

f∗ ∈ argmin
f∈F

Q(f)

fn ∈ argmin
f∈Fn

Qn(f)

Note that we do not assume that fn or f∗ are unique. Lastly we define the functions :

f∗n ∈ argmin
f∈Fn

Q(f)

f̃∗(x) = f∗(NNm(x))

Note that to avoid technical overload we will assume throughout this paper that all the suprema and infima
are attained. If this is not the case one can always go over to statements about functions which are ε-close
to the suprema or infima, respectively. However, this leads to a heavy overload in notation, which we
would like to avoid. The reader will be able to modify our results appropriately if necessary.

Morevoer, it is very important to point out that the functions fn, f̃∗ and the function space Fn are data-
dependent. Thus we have to be very careful when dealing with probabilities related to those quantities.
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2 Main result: consistency theorem in a general setting

The following theorem is the main theorem of our paper. It states general assumptions on the quantities
involved which ensure that nearest neighbor clustering is weakly consistent.

Theorem 1 (Consistency of nearest neighbor clustering) Let (Xn)n∈N be a sequence of random vari-
ables which have been drawn i.i.d. according to some probability measure P on Rd (with d > 1). Let
m := m(n) ≤ n be the number of points used as nearest neighbor centers in the nearest neighbor clus-
tering algorithm. For any function f ∈ H let A(f) and An(f) be predicates as defined above. Let
Q : H → R+ be a clustering quality function, and Qn : H → R+ an estimator of this function which can
be computed based on the finite sample only (that is, it does not involve any function evaluations f(x) for
x /∈ {X1, . . . , Xn}). Assume that the following conditions are satisfied:

1. Qn(f) is a consistent estimator of Q(f) which converges sufficiently fast for all f ∈ F̃n:

∀ε > 0, Km(2n)(d+1)m2
sup

f∈ eFn

P(|Qn(f)−Q(f)| > ε) → 0,

2. An(f) is a consistent estimator of A(f) in the following sense :

P(An(f̃∗)) → 1
P(A(fn)) → 1,

3. Q is uniformly continuous with respect to the pseudo-distance d between F and Fn:

∀ε > 0,∃δ(ε) > 0 such that ∀f ∈ F , g ∈ Fn, : d(f, g) ≤ δ(ε) ⇒ |Q(f)−Q(g)| ≤ ε,

4. limn→∞m(n) = +∞.

Then nearest neighbor clustering is weakly consistent, that is Q(fn) tends to Q(f∗) in probability.

3 Proof of Theorem 1

To prove the theorem we have to show that under the conditions stated, for any fixed ε > 0 the term
P(|Q(fn)−Q(f∗)| ≥ ε) converges to 0. We can study each ”side” of this convergence independently:

P(|Q(fn)−Q(f∗)| ≥ ε) = P(Q(fn)−Q(f∗) ≤ −ε) + P(Q(fn)−Q(f∗) ≥ ε).

To treat the “first side” observe that if fn ∈ F then Q(fn)−Q(f∗) > 0 by the definition of f∗. This leads
to

P(Q(fn)−Q(f∗) ≤ −ε) ≤ P(fn /∈ F) = P(A(fn)c).

Under Assumption (2) of Theorem 1 this term tends to 0.

The main work of the proof is to take care of the second side. To this end we split Q(fn) − Q(f∗) in two
terms, the estimation error and the approximation error :

Q(fn)−Q(f∗) = Q(fn)−Q(f∗n) + Q(f∗n)−Q(f∗).

For a fixed ε > 0 we have :

P(Q(fn)−Q(f∗) ≥ ε) ≤ P(Q(fn)−Q(f∗n) ≥ ε/2) + P(Q(f∗n)−Q(f∗) ≥ ε/2).

In the following sections we will treat both parts separately. In the remaining part of this section we will
always assume that the “general assumptions” of Theorem 1 are true (that is the assumptions except the
ones labeled by (1)-(4) ).

3.1 Estimation error

The first step is to see that
Q(fn)−Q(f∗n) ≤ 2 sup

f∈Fn

|Qn(f)−Q(f)|.
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Indeed we have (since Qn(fn) ≤ Qn(f∗n) by the definition of fn):

Q(fn)−Q(f∗n) = Q(fn)−Qn(fn) + Qn(fn)−Qn(f∗n) + Qn(f∗n)−Q(f∗n)
≤ Q(fn)−Qn(fn) + Qn(f∗n)−Q(f∗n)
≤ 2 sup

f∈Fn

|Qn(f)−Q(f)|.

Now we will focus on the right hand side of this inequality. In order to bound it we will state two lemmas.
The proof techniques for those lemmas are similar to the ones in Devroye et al. (1996), Section 12.3 and
Chapter 13. The first lemma is the most important part of the proof. It allows us to get the supremum out of
the probability. Recall that the shattering coefficient of a function class G of functions in a discrete valued
space {1, ...,K} with respect to sample size n is defined by

s(G, n) = max
x1,...,xn

|{(f(x1), . . . , f(xn)) | f ∈ G}|.

Lemma 2 Under the general assumptions of Theorem 1 we have:

P( sup
f∈Fn

|Qn(f)−Q(f)| ≥ ε) ≤ 2s(F̃n, 2n)

sup
f∈ eFn

P(|Qn(f)−Q(f)| ≥ ε/4)

inf
f∈ eFn

P(|Qn(f)−Q(f)| ≤ ε/2)
.

Proof. First note that we can replace the data-dependent function class Fn by the class F̃n which does not
depend on the data:

P( sup
f∈Fn

|Qn(f)−Q(f)| ≥ ε) ≤ P( sup
f∈ eFn

|Qn(f)−Q(f)| ≥ ε).

Now we want to use a symmetrization argument. To this end, let X ′
1, . . . , X

′
n be a ghost sample (that is a

sample drawn i.i.d. according to P which is independent of our first sample X1, . . . , Xn), and denote by
Q′

n the empirical quality function based on the ghost sample.

Let f̂ ∈ F̃n be such that |Qn(f̂)−Q(f̂)| ≥ ε; if such an f̂ does not exist then just choose f̂ as some other
fixed function in F̃n. Notice that f̂ is a data-dependent function depending on the sample X1, ..., Xn.

We have the following inequalities:

P( sup
f∈ eFn

|Qn(f)−Q′
n(f)| ≥ ε/2)

≥ P(|Qn(f̂)−Q′
n(f̂)| ≥ ε/2)

≥ P(|Qn(f̂)−Q(f̂)| ≥ ε, |Q′
n(f̂)−Q(f̂)| ≤ ε/2)

= E
(
P(|Qn(f̂)−Q(f̂)| ≥ ε, |Q′

n(f̂)−Q(f̂)| ≤ ε/2|X1, . . . , Xn)
)

= E
(
P(|Qn(f̂)−Q(f̂)| ≥ ε|X1, . . . , Xn)P(|Q′

n(f̂)−Q(f̂)| ≤ ε/2|X1, . . . , Xn)
)

= E
(
1|Qn( bf)−Q( bf)|≥εP(|Q′

n(f̂)−Q(f̂)| ≤ ε/2|X1, . . . , Xn)
)

≥ E
(

1|Qn( bf)−Q( bf)|≥ε inf
f∈F̃n

P(|Q′
n(f)−Q(f)| ≤ ε/2|X1, . . . , Xn)

)
= E

(
1|Qn( bf)−Q( bf)|≥ε|X1, . . . , Xn

)
inf

f∈F̃n

P(|Q′
n(f)−Q(f)| ≤ ε/2)

= P(|Qn(f̂)−Q(f̂)| ≥ ε) inf
f∈ eFn

P(|Qn(f)−Q(f)| ≤ ε/2)

= P( sup
f∈ eFn

|Qn(f)−Q(f)| ≥ ε) inf
f∈ eFn

P(|Qn(f)−Q(f)| ≤ ε/2)

The last step is true because of the definition of f̂ (note that due to the definition of f̂ the event
|Qn(f̂) −Q(f̂)| ≥ ε is true iff there exists some f ∈ F̃n such that |Qn(f) −Q(f)| ≥ ε, which is true iff
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supf∈F̃n
|Qn(f)−Q(f)| ≥ ε).

Rearranging the inequality of above leads to

P( sup
f∈ eFn

|Qn(f)−Q(f)| ≥ ε) ≤
P( sup

f∈ eFn

|Qn(f)−Q′
n(f)| ≥ ε/2)

inf
f∈ eFn

P(|Qn(f)−Q(f)| ≤ ε/2)
.

Due to the symmetrization we got rid of the quantity Q(f) in the numerator. Furthermore using the as-
sumption of the theorem that Qn(f) does not involve any function evaluations f(x) for x /∈ {X1, . . . , Xn}
we can apply a union bound argument to move the supremum in the numerator out of the probability:

P( sup
f∈ eFn

|Qn(f)−Q′
n(f)| ≥ ε/2)

≤ s(F̃n, 2n) sup
f∈ eFn

P(|Qn(f)−Q′
n(f)| ≥ ε/2)

≤ s(F̃n, 2n) sup
f∈ eFn

P(|Qn(f)−Q(f)|+ |Q(f)−Q′
n(f)| ≥ ε/2)

≤ 2s(F̃n, 2n) sup
f∈ eFn

P(|Qn(f)−Q(f)| ≥ ε/4)

This completes the proof of the lemma. �

Remark Readers familiar with symmetrization might wonder where the unusual term involving the infimum
in the denominator comes from. In fact, it pops up in the symmetrization step. In a more standard setting
where we have EQn = Q, this term usually “disappears” as it can be lower bounded by 1/2, for example
using Chebyshev’s inequality (e.g., Section 12.3 of Devroye et al., 1996). Unfortunately, this does not work
in our more general case.

Lemma 3 Let u ∈ N and F̃n and F̂n be the function sets defined above. Then

s(F̃n, u) ≤ s(F̂n, u) ≤ Kmu(d+1)m2
.

Proof. The first inequality is obvious as we have F̃n ⊂ F̂n. For the second inequality observe that

s(F̂n, u) ≤ Kms∗(F̂n, u)

where s∗(F̂n, u) is the maximal number of different ways u points can be partitioned by cells of a Voronoi
partition of m points. It is well known (e.g., Section 21.5 of Devroye et al., 1996) that s∗(F̂n, u) ≤
u(d+1)m2

for d > 1.

�

Combining the lemmas above now leads to a bound on the estimation error:

Proposition 4 (Bound on the estimation error) Under the general assumptions of Theorem 1 we have for
every fixed ε > 0 that

P(Q(fn)−Q(f∗n) ≥ ε) ≤ 2Km(2n)(d+1)m2

sup
f∈ eFn

P(|Qn(f)−Q(f)| ≥ ε/8)

inf
f∈ eFn

P(|Qn(f)−Q(f)| ≤ ε/4)
.

Under Assumption (1) of Theorem 1 this converges to 0.

Proof. With the comment at the beginning of this section we have
P(Q(fn)−Q(f∗n) ≥ ε) ≤ P( sup

f∈Fn

|Qn(f)−Q(f)| ≥ ε/2).

Then the results of Lemmas 2 and 3 yields the bound. Observe that under Assumption (1) the numerator of
the expression in the proposition tends to 0 and the denominator tends to 1, so the whole term tends to 0. �
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3.2 Approximation error

Recall that f̃∗ is defined by f̃∗(x) = f∗(NNm(x)). If An(f̃∗) is true then f̃∗ ∈ Fn. By the definition of
f∗n then the following bound holds true :

Q(f∗n)−Q(f∗) ≤ Q(f̃∗)−Q(f∗).

This leads to the following:

P(Q(f∗n)−Q(f∗) ≥ ε) = P(Q(f∗n)−Q(f∗) ≥ ε, f∗ ∈ Fn) + P(Q(f∗n)−Q(f∗) ≥ ε, f∗ 6∈ Fn)

≤ P(f̃∗ ∈ Fn, Q(f̃∗)−Q(f∗) ≥ ε) + P(An(f̃∗)c)

The second term converges to 0 due to Assumption (2) of Theorem 1. To bound the first term we will now
use Assumption (3) of Theorem 1. We first prove the following lemma with ideas from Fritz, 1975.

Lemma 5 Let f : X → {1, . . . ,K} be continuous almost everywhere and

Ln := P(f(X) 6= f(NNm(X))|X1, . . . , Xn).

Then for every ε > 0 there exists a constant b(ε) > 0 independent of n and f such that

P(Ln ≥ ε) ≤ 2
ε
e−mb(ε).

Proof. The first step of the proof consists in constructing a certain set B (depending on ε) which satisfies
the following statement:

For all ε there exists a δ(ε) > 0, a measurable set B ⊂ Rd and a constant 1 > u > 0 such that
(a) P(B) ≥ 1− ε/2
(b) ∀x ∈ B : P(B(x, δ)) > u
(c) ∀x ∈ B the function f is constant on B(x, δ).

Assume we have such a set B. Then using Property (c) and (a) we see that

Ln = P(f(X) 6= f(NNm(X))|X1, . . . , Xn)

≤ P(X /∈ B|X1, . . . , Xn) + P(X ∈ B, |X −NNm(X)| > δ|X1, . . . , Xn)

≤ ε
2 + P(X ∈ B, |X −NNm(X)| > δ|X1, . . . , Xn).

Using the Markov inequality we can then see that

P(Ln > ε) ≤ P(P(X ∈ B, |X −NNm(X)| > δ|X1, . . . , Xn) ≥ ε
2 )

≤ 2
ε E(P(X ∈ B, |X −NNm(X)| > δ|X1, . . . , Xn))

= 2
ε P(X ∈ B, |X −NNm(X)| > δ)

= 2
ε

∫
B

P(|x−NNm(x)| > δ) dP(x).

Due to Property (b) we know that for all x ∈ B,

P(|x−NNm(x)| > δ) = P(∀i ∈ {1, . . . ,m}, x /∈ B(Xi, δ))

= (1− P(B(x, δ)))m

≤ (1− u)m.

Setting b(ε) := −log(1− u) > 0 then leads to

P (Ln > ε) ≤ 2
ε

P(B)(1− u)m ≤ 2
ε
e−mb(δ(ε)).
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So to finish the proof of the lemma we have to show how the set B can be constructed. By the assumption
of the lemma we know that f is continuous a.e., and that f only takes finitely many values 1, ...,K. This
implies that the set

C = {x ∈ Rd : ∃δ > 0 : d(x, y) ≤ δ ⇒ f(x) = f(y)}
satisfies P(C) = 1. Furthermore, for any δ > 0 we define the set

Aδ = {x ∈ C : d(x, y) ≤ δ ⇒ f(x) = f(y)}.
We have ∪δAδ = C and for σ > δ we have Aσ ⊂ Aδ. This implies that given some ε > 0 there exists
some δ(ε) > 0 such that P(Aδ(ε)) ≥ 1− ε/4. By construction, all points in Aδ(ε) satisfy Property (c).

As the next step, we can see that for every δ > 0 one has P(B(x, δ)) > 0 almost surely (with respect to x).
Indeed, the set U = {x : ∃δ > 0 : P(B(x, δ)) = 0} is a union of sets of probability zero. So using the fact
that Rd is separable we see that P(U) = 0 which proves our statement.

In other words we have P(P(B(X, δ)|X) > 0) = 1, which implies P(P(B(X, δ)|X) > 1
n ) → 1. This

means that given ε > 0 and δ > 0 there exists a set A and a constant u > 0 such that P(A) ≥ 1− ε/4 and
∀x ∈ A, P(B(x, δ)) > u. So all points in A satisfy Property (b).

Now finally define the set B = A
⋂

Aδ(ε). By construction, this set has probability P (B) ≥ ε/2, so it
satisfies Property (a). It satisfies Properties (b) and (c) by construction of A and Aδ(ε), respectively. �

Proposition 6 (Bound on the approximation error) If the general assumptions of Theorem 1 and As-
sumption (3) are satisfied, then for every ε > 0 there exists a δ(ε) > 0 and a b(δ(ε)) > 0 such that

P(Q(f∗n)−Q(f∗) ≥ ε) ≤ P(An(f̃∗)c) +
2

δ(ε)
e−mb(δ(ε)).

Moreover, under Assumptions (2) and (4) this term tends to 0 if n →∞ and ε > 0 is fixed.

Proof. With the comment made at the beginning of this section we have

P(Q(f∗n)−Q(f∗) ≥ ε) ≤ P(An(f̃∗)c) + P(f̃∗ ∈ Fn, Q(f̃∗)−Q(f∗) ≥ ε).

Now if f̃∗ ∈ Fn then by Assumption (3) we know that ∀ε > 0 there exists δ(ε) > 0 such that

d(f̃∗, f∗) ≤ δ(ε) ⇒ Q(f̃∗)−Q(f∗) ≤ ε.

So with the previous lemma it means that :

P(f̃∗ ∈ Fn, Q(f̃∗)−Q(f∗) ≥ ε) ≤ P
(
P(d(f̃∗, f∗) > δ(ε))

)
≤ 2

δ(ε)
e−mb(δ(ε)).

�

3.3 Rate of convergence

Actually, the proof of Theorem 1 implies the following bound:

Theorem 7 (Rate of Convergence) Under the general assumptions of Theorem 1 and if Assumption (3) is
satisfied then for all ε > 0 there exist constants δ(ε) > 0 and b(δ(ε)) > 0 such that for all n ∈ N and
m ≤ n we have

P(|Q(fn)−Q(f∗)| ≥ ε)

≤ 2Km(2n)(d+1)m2

sup
f∈ eFn

P(|Qn(f)−Q(f)| ≥ ε/16)

inf
f∈ eFn

P(|Qn(f)−Q(f)| ≤ ε/8) + P(An(f̃∗)c) + P(A(fn)c) + 2
δ(ε/2)e

−mb(δ(ε/2)).

Remark Note that the constant δ(ε) is the one given in Assumption (3) of Theorem 1, whereas the constant
b(δ(ε)) has been defined only implicitly in Lemma 5. As we do not have an explicit functional form of the
dependency of b on ε we cannot simply use the Borel-Cantelli lemma to transform the preceding bound into
almost sure convergence. If one would like to prove strong consistency of nearest neighbor clustering one
would have to get an explicit form of δ(ε) and b(δ(ε)). Of course, to apply Borel-Cantelli one would also
need rates of convergence in Assumption (2) of Theorem 1.
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4 Applications

Now we will apply our theorem to different popular clustering objective functions and show that nearest
neighbor clustering is consistent under very mild conditions. The major part of the work is often to prove
that Assumption (1) of Theorem 1 is true. In cases where EQn = Q this can be very simple by using
concentration inequalities. However, if EQn 6= Q we have to use more elaborate techniques. In fact, it
turns out that this is the case for all the clustering objective functions we are going to study. The second
issue is proving Assumption (2) of Theorem 1. In our examples we will focus on properties A(f) which
state that the clustering function f constructs K clusters of a certain “minimal size”. In the following we
would like to introduce some general propositions to deal with this case. Again we need some notation:

Introduce operators Φk,Φk,n : H → Rd. Let a > 0 be a fixed constant and (an)n∈N a sequence with
an > a and an → a. For any g ∈ H let

An(g) = true ⇐⇒ ∀k ∈ {1, . . . ,K},Φk,n(g) > an

A(g) = true ⇐⇒ ∀k ∈ {1, . . . ,K},Φk(g) > a.

In particular we have the following simple lemma:

Lemma 8 Let a > 0, an > a, an → a, and Φk be as defined above. Define

a∗ := inf
k

Φk(f∗k )− a

a∗n := inf
k

Φk(f∗k )− an.

Then we have that a∗ > 0. Furthermore, there exists some N ∈ N such that for all n ≥ N we have a∗n > 0.

Proof. As f∗ ∈ F , the statement a∗ > 0 follows from the definition of A(f) (note that this the definition
of A(f) uses a strict inequality). The statement about a∗n follows from the fact that an → a implies
a∗n → a∗ > 0. �

Proposition 9 (Assumption (2) of Theorem 1) Assume that Φk,n can be computed on the data and that
the following statements are true:

(i) Φk is continuous in the following sense :

∀ε > 0,∃δ(ε) : ∀f, g : Rd → {1, . . . ,K}, d(f, g) ≤ δ ⇒ Φk(f)− Φk(g) ≤ ε,

(ii) Φk,n converges to Φk fast enough: ∀k ∈ {1, . . . ,K},∀ε > 0

Km(2n)(d+1)m2
sup

g∈ bFn

P(Φk,n(g)− Φk(g) ≥ ε) → 0,

(iii) an decreases slowly enough to a:

Km(2n)(d+1)m2
sup

g∈Fn,k
P(Φk,n(g)− Φk(g) ≥ an − a) → 0.

Then Assumption (2) of Theorem 1 is satisfied if m →∞.

Proof. We begin by proving that P(A(fn)c) → 0. As fn ∈ Fn by definition we have that Φk,n(fn) > an

for all k = 1, . . . ,K. A union bound argument shows that

P(A(fn)c) ≤ K sup
k

P(Φk(fn) ≤ a).

Using the same techniques as in the proof of Lemma 2 we can show:

P(Φk(fn) ≤ a) ≤ P(Φk,n(fn)− Φk(fn) ≥ an − a)
≤ P( sup

g∈Fn

Φk,n(g)− Φk(g) ≥ an − a)

≤ 2s(F̂n, 2n)

sup
g∈ bFn

P(Φk,n(g)− Φk(g) ≥ (an − a)/4)

inf
g∈ bFn

P(Φk,n(g)− Φk(g) ≤ (an − a)/2)
.
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Moreover, we already proved in Lemma 3 that s(F̂n, 2n) ≤ Km(2n)(d+1)m2
then under the Assumption

(iii) we see that this term tends to 0.

Now we have to prove that P(An(f̃∗)c) → 0. By the same union bound argument as above we have that

P(An(f̃∗)c) ≤ K sup
k

P(Φk,n(f̃∗) ≤ an).

According to Lemma 8 there exists N such that n ≥ N ⇒ a∗n > 0. Now for n ≥ N we have the following
inequalities (using Assumption (i) of the proposition):

P(An(f̃∗)c) = P(f̃∗ 6∈ Fn)

= P(Φk,n(f̃∗) ≤ an)

= P(Φk(f∗)− Φk,n(f̃∗) ≥ Φk(f∗)− an)

= P(Φk(f∗)− Φk(f̃∗) + Φk(f̃∗)− Φk,n(f̃∗) ≥ Φk(f∗)− an)

≤ P(Φk(f∗)− Φk(f̃∗) ≥ (Φk(f∗)− an)/2) + P(Φk(f̃∗)− Φk,n(f̃∗) ≥ (Φk(f∗)− an)/2)

≤ P(Φk(f∗)− Φk(f̃∗) ≥ a∗n/2) + P(Φk(f̃∗)− Φk,n(f̃∗) ≥ a∗n/2)

≤ P(d(f∗, f̃∗) > δ(a∗n/2)) + P( sup
g∈ bFn

Φk(g)− Φk,n(g) ≥ a∗n/2)

≤ 2
δ(a∗n/2)e

−mb(δ(a∗n/2)) + P( sup
g∈ bFn

Φk(g)− Φk,n(g) ≥ a∗n/2).

If m → ∞ then the first term goes to 0. For the second term the key step is to see that doing exactly the
same things that in proof of lemma 2 we get :

P( sup
g∈ bFn

Φk(g)− Φk,n(g) ≥ a∗n/2)

≤ 2Km(2n)(d+1)m2

sup
g∈ bFn

P(Φk(g)− Φk,n(g) ≥ a∗n/8)

inf
g∈ bFn

P(Φk(g)− Φk,n(g) ≤ a∗n/4) .

Under Assumption (ii) this term tends to 0. �

In the previous proof we implicitly also showed the following rate of convergence :

Proposition 10 (Rate of convergence for Assumption (2) of Theorem 1) Assume that Φk,n can be com-
puted on the data. Then we have

P(A(fn)c) ≤ 2Km+1(2n)(d+1)m2
sup

k

sup
g∈ bFn

P(Φk,n(g)− Φk(g) ≥ (an − a)/4)

inf
g∈ bFn

P(Φk,n(g)− Φk(g) ≤ (an − a)/2)
.

Moreover if Assumption (i) of Proposition 9 is satisfied and n > N (recall the definitions of N and a∗n in
Lemma 8) then we have

P(An(f̃∗)c) ≤ 2K

δ(a∗n/2)
e−mb(δ(a∗n/2)) + 2Km+1(2n)(d+1)m2

sup
k

sup
g∈ bFn

P(Φk,n(g)− Φk(g) ≥ a∗n/8)

inf
g∈ bFn,k

P(Φk,n(g)− Φk(g) ≤ a∗n/4)
.

For convenience we also recall the McDiarmid inequality, which will be used several times.
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Theorem 11 (McDiarmid inequality) Let (Xn)n∈N be a sequence of independent random variables. Let
g : (Rd)n → R be measurable and c > 0 a constant such that for all 1 ≤ i ≤ n we have

sup
x1,...,xn,x′∈Rd

g(x1, . . . , xn)− g(x1, . . . , xi−1, x
′, xi+1, . . . , xn) ≤ c.

Then

P(g(X1, . . . , Xn)− Eg(X1, . . . , Xn) ≥ ε) ≤ e−
2ε2

nc2

P(Eg(X1, . . . , Xn)− g(X1, . . . , Xn) ≥ ε) ≤ e−
2ε2

nc2

P(|g(X1, . . . , Xn)− Eg(X1, . . . , Xn)| ≥ ε) ≤ 2e−
2ε2

nc2

4.1 Normalized cut objective function

In this section we want to apply the consistency theorem for nearest neighbor clustering to the case where
the objective function is the normalized cut objective function. This is the objective function which spectral
clustering attempts to minimize. In this section we assume that we are given a similarity function s : Rd ×
Rd → R+ which is upper bounded by a global constant S > 0. We make this assumption for convenience,
as this will allow us at several places to apply the McDiarmid concentration inequality. Moreover we will
use the convention ”0/0 = 0” to define our objective functions. We define the Ncut objective function as
follows. For an indicator function f : Rd → {0, 1} let

cut(f) := Ef(X1)(1− f(X2))s(X1, X2)

cutn(f) := 1
n(n−1)

∑
i 6=j

f(Xi)(1− f(Xj))s(Xi, Xj)

vol(f) := Ef(X1)s(X1, X2)

voln(f) := 1
n(n−1)

∑
i 6=j

f(Xi)s(Xi, Xj)

For a clustering function f : Rd → {1, . . . ,K} taking K values we define
fk := 1f=k

Ncutn(f) :=
K∑

k=1

cutn(fk)
voln(fk)

Ncut(f) :=
K∑

k=1

cut(fk)
vol(fk)

.

Remark Note that ENcutn 6= Ncut but Evoln = vol and Ecutn = cut.

We consider the properties

An(f) = true ⇐⇒ ∀k ∈ {1, . . . ,K}, voln(fk) > an

A(f) = true ⇐⇒ ∀k ∈ {1, . . . ,K}, vol(fk) > a.

The reason why we need those properties is because the Ncut objective function has the volume of the
clusters in the denominator. The conditions now ensure that Ncut is continuous on Fn and F (and even
Lipschitz, so giving bounds will be easier). Note also that implicitly this conditions also implies that we
always obtain exactly K clusters and do not allow empty clusters. For consistency reasons we will later
assume that an > a and an → a.

To prove the consistency of nearest neighbor clustering for Ncut we now need to check the assumptions
of Theorem 1. Clearly the general assumptions are true. Now we will prove one lemma for each for the
remaining Assumptions (1) - (3).
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Lemma 12 (Assumption 1 for Ncut) For f ∈ F̃n we have

P(|Ncut(f)−Ncutn(f)| > ε) ≤ 4Ke−
na2ε2

8S2K2 .

Proof. We first want to split the deviations of Ncut into those of cut and vol, respectively. To this end we
want to show that for any f ∈ F̃n

{|cutn(fk)− cut(fk)| ≤ a
2 ε}

⋂
{|voln(fk)− vol(fk)| ≤ a

2 ε}

⊂ {| cutn(fk)
voln(fk) −

cut(fk)
vol(fk) | ≤ ε}.

This can be seen as follows. Assume that |cutn(fk) − cut(fk)| ≤ ε and |voln(fk) − vol(fk)| ≤ ε. If
vol(fk) 6= 0 then we have (using the facts that cut(fk) ≤ vol(fk) and that voln(fk) > an > a by
definition of F̃n) :

cutn(fk)
voln(fk) −

cut(fk)
vol(fk) = cutn(fk)vol(fk)−cut(fk)voln(fk)

voln(fk)vol(fk)

≤ (cut(fk)+ε)vol(fk)−cut(fk)(vol(fk)−ε)
voln(fk)vol(fk)

= ε
voln(fk)

cut(fk)+vol(fk)
vol(fk)

≤ 2ε
a .

On the other hand, if vol(fk) = 0 then we have cut(fk) = 0, which implies cutn(fk) ≤ ε by the assumption
above. Thus the following statement holds true:

cutn(f)
voln(f)

− cut(f)
vol(f)

=
cutn(f)
voln(f)

≤ ε

a
≤ 2ε

a
.

Using the same technique we have the same bound for cut(fk)
vol(fk) −

cutn(fk)
voln(fk) , which proves our set inclusion.

Now we apply a union bound and the McDiarmid inequality. For the latter, note that if one changes one Xi

then cutn(f) and voln(f) will change at most by 2S/n. Together all this leads to
P(|Ncut(f)−Ncutn(f)| > ε)

≤ Ksup
k

P(|cutn(fk)
voln(fk)

− cut(fk)
vol(fk)

| > ε/K)

≤ Ksup
k

(
P(|cutn(fk)− cut(fk)| > a

2K
ε) + P(|voln(fk)− vol(fk)| > a

2K
ε)
)

≤ 4Ke−
na2ε2

8S2K2 .

�

Lemma 13 (Assumption (2) for Ncut) The following holds true

P(A(fn)c) ≤ 2Km+1(2n)(d+1)m2 e−
n(an−a)2

32S2

1− e−
n(an−a)2

8S2

.

If additionally we have a∗n > 0 (recall the definition of a∗n in Lemma 8) then

P(An(f̃∗)c) ≤ 4SK
a∗n

e−mb(a∗n/(2S)) + 2Km+1(2n)(d+1)m2 e
−

na∗n
2

128S2

1−e
−

na∗n
2

32S2

.

Proof. We use Proposition 10 with Φn,k(f) := voln(fk) and Φk(f) := vol(fk). To apply this proposition
we first have to check that Assumption (i) of Proposition 9 is true. To this end we bound

|vol(gk)− vol(fk)| = |
∫ ∫

(fk(X)− gk(X))s(X, Y )|

≤ S
∫
{fk=gk} 0 + S

∫
{fk=gk}c 1

= SP(fk 6= gk)

≤ Sd(f, g).

11



Now we use the McDiarmid inequality and the fact that changing one variable Xi only changes voln(g) by
at most 2S/n. This implies that for all g ∈ F̂n and ε > 0

P(voln(gk)− vol(gk) ≥ ε) ≤ e−
nε2

2S2 .

The same statement holds for vol(gk)− voln(gk). This implies Assumption (i) of Proposition 9. Plugging
this into Proposition 10 leads to the lemma. �

Lemma 14 (Assumption (3) for Ncut) Let f ∈ F and g ∈ Fn. Then we have

|Ncut(f)−Ncut(g)| ≤ 4SK

a
d(f, g).

Proof. We begin with the following inequalities :

|cut(fk)− cut(gk)| = |
∫ ∫

fk(X)(1− fk(Y ))s(X, Y )− gk(X)(1− gk(Y ))s(X, Y )|

≤ S
∫ ∫

{f=g}2 0 + S
∫ ∫

({f=g}2)c 1

= S(1− P(f(X) = g(X))2)

= S(1− (1− d(f, g))2)

≤ 2Sd(f, g)

and
|vol(fk)− vol(gk)| = |

∫ ∫
fk(X)s(X, Y )− gk(X)s(X, Y )|

≤ S
∫ ∫

{f=g} 0 + S
∫ ∫

({f=g})c 1

= Sd(f, g)

≤ 2Sd(f, g).

If vol(g) 6= 0 then we have (using the fact that we always have cut(f) ≤ vol(f)) :
cut(fk)
vol(fk) −

cut(gk)
vol(gk) = cut(fk)vol(gk)−cut(gk)vol(fk)

vol(fk)vol(gk)

≤ (cut(gk)+2Sd(f,g))vol( ef)−cut(gk)(vol(gk)−2Sd(f,g))
vol(fk)vol(gk)

= 2Sd(f,g)
vol(fk)

vol(gk)+cut(gk)
vol(gk)

≤ 4S
a d(f, g)).

On the other hand if vol(gk) = 0 then we have |cut(fk)| ≤ |vol(fk)| ≤ 2Sd(f, g) so the following hold
true :

cut(fk)
vol(fk)

− cut(gk)

vol(f̃k)
=

cut(fk)
vol(fk)

≤ 2Sd(f, g)
a

≤ 4S

a
d(f, g).

So all in all we have
Ncut(f)−Ncut(g) ≤ 4SK

a
d(f, g).

We can use the same technique to bound Ncut(g)−Ncut(f). This proves the lemma. �

Now we can state a consistency theorem and a rate of convergence.

Theorem 15 (Consistency of nearest neighbor clustering with Ncut) Assume that the similarity mea-
sure s is bounded by S, an > a, an → a,m →∞ and

m2 log n

n(a− an)2
→ 0.

Then Ncut is universally weakly consistent, that is for all probability measure Ncut(fn) tends to Ncut(f∗)
in probability.

12



Proof. The general assumptions of Theorem 1 and Assumption (4) are clearly satisfied. Lemma 14 gives
Assumption (3). Now for the Assumption (1) and (2) we have to check some limits.

First of all remark that the assumptions an → a,m →∞ and m2 log n
n(a−an)2 → 0 implies that n(a−an)2 →∞

and m2 log n
n → 0 and m2 log n

na∗n
2 → 0 (recall Lemma 8).

Because of Lemma 12 to check Assumption (1) we only have to prove that

∀ε > 0,Km+1(2n)(d+1)m2
e−nε → 0.

This follows clearly from Km+1(2n)(d+1)m2
e−nε = e

−n

„
(m+1) log K+(d+1)m2 log(2n)

−n +ε

«
and m2 log n

n → 0.

Because of Lemma 13 and since m →∞, to check Assumption (2) we only have to prove that

Km(2n)(d+1)m2
e−n(an−a)2 → 0 and Km(2n)(d+1)m2

e−na∗n
2
→ 0.

It is easy to see that Km(2n)(d+1)m2
e−n(an−a)2 = e

−n(a−an)2
„

(m+1) log K+(d+1)m2 log(2n)
−n(a−an)2

+1)

«
so using

that m2 log n
n(a−an)2 → 0 and n(a − an)2 → ∞ we have proved the first limit. For the second one we use

m2 log n
na∗n

2 → 0 and na∗n
2 →∞ since a∗n → a∗ > 0 (recall Lemma 8). �

Theorem 16 (Rate of Convergence of nearest neighbor clustering with Ncut) Let N and a∗n be defined
as in Lemma 8 . Then for n ≥ N the following bound holds true:

P(|Ncut(fn)−Ncut(f∗)| ≥ ε)

≤ 2Km+1(2n)(d+1)m2

(
4e

− na2ε2

2048S2K2

1−4Ke
− na2ε2

512S2K2
+ e

−n(an−a)2

32S2

1−e
−n(an−a)2

8S2

+ e
−

na∗n
2

128S2

1−e
−

na∗n
2

32S2

)

+ 4SK
a∗n

e−mb(a∗n/(2S)) + 16SK
aε e−mb(aε/(8SK)).

Proof. Since the general assumptions of Theorem 1 hold and Assumption (3) of Theorem 1 is true
according to Lemma 14 we can apply Theorem 7. The rate of convergence then follows from Lemmas 12,
13 and 14. �

Remark The conditions on an and m are easily satisfied as soon as they do not converge too fast to their
limit. For example, if we define

an = a +
1

log n
and m = log n

then
m2 log n

n(an − a)2
=

(log n)5

n
→ 0.

Moreover, in this case we can also see that the rate of convergence given by Theorem 16 is valid as soon as
n > e1/a∗ (where a∗ is given as in Lemma 8).

4.2 Ratio cut objective function

In this section we will prove the consistency of nearest neighbor clustering for the Ratiocut objective func-
tion, which is the objective function under consideration by unnormalized spectral clustering. For the sake
of shortness we refrain from proving rates of for this case, which can be done analogous to the Ncut case.
Again we will assume that the similarity function s is upper bounded by a constant S > 0.
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The Ratiocut objective function will be denoted by RC. For a clustering function f we define

nk :=
1
n

n∑
i=1

fk(Xi)

RCn(f) :=
K∑

k=1

cutn(fk)
nk(f)

RC(f) :=
K∑

k=1

cut(fk)
Efk(X)

and consider the properties

An(f) = true ⇐⇒ ∀k ∈ {1, . . . ,K}, nk(f) > an

A(f) = true ⇐⇒ ∀k ∈ {1, . . . ,K}, Efk(X) > a.

Lemma 17 (Assumption (1) for Ratiocut) For f ∈ F̃n we have

P(|RCn(f)−RC(f)| > ε) ≤ 2Ke−
na2ε

8S2K2 + 2Ke−
na2ε2

2K2 .

Proof. Using exactly the same proof as for Lemma 12 (just changing voln(fk) to nk and vol(fk) to
Efk(X) and using the fact that cut(fk) ≤ SEfk(X)) we get

P(|RCn(f)−RC(f)| > ε)

≤ Ksup
k

(
P(|cutn(fk)− cut(fk)| > a

(S + 1)K
ε) + P(|nk(f)− Efk(X)| > a

(S + 1)K
ε)
)

.

Now a simple McDiarmid argument (using again the fact that changing one Xi changes cutn by at most
2S/n) gives the lemma. �

Lemma 18 (Assumption (2) for Ratiocut) If an > a, an → a and
m2 log n

n(an − a)2
→ 0

then Assumption (2) of Theorem 1 is satisfied.

Proof. We will use Proposition 9 with Φk,n(f) = nk(f) and Φk(f) = Efk(X). Clearly Assumption (i)
of Proposition 9 is satisfied since |Φk(f)− Φk(g)| = |Efk(X)− Egk(X)| ≤ d(f, g).

For Assumptions (ii) and (iii) of Proposition 9 we apply the McDiarmid inequality to get that for all
g ∈ F̂n and ε > 0 :

P(nk(g)− Egk(X)) ≥ ε) ≤ e−2nε2 .

Then we apply the same methods as in the proof of Theorem 15. �

Lemma 19 (Assumption (3) for Ratiocut) Let f ∈ F and g ∈ Fn. Then we have:

|RC(f)−RC(g)| ≤ 2(S + 1)K
a

d(f, g).

Proof. This follows by the same proof as Lemma 14, just changing voln(fk) to nk, vol(fk) to Efk(X)
and using the fact that cut(fk) ≤ SEfk(X). �

Theorem 20 (Consistency of nearest neighbor clustering with Ratiocut) Assume that the similarity
measure s is bounded by S, an > a, an → a,m →∞ and

m2 log n

n(an − a)2
→ 0.

Then Ratiocut is universally weakly consistent, that is for all probability measure RC(fn) tends to RC(f∗)
in probability.
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4.3 Objective function based on the ratio of within-cluster and between-cluster similarity

Often, clustering algorithms try to minimize joint functions of the within-cluster similarity and the between
cluster similarity. The most popular choice is their ratio, and this is what we want to consider in this section.
The within- and between-cluster similarities of cluster k are given as

In(fk) :=
1

n(n− 1)

∑
i 6=j

fk(Xi)fk(Xj)s(Xi, Xj) = voln(fk)− cutn(fk)

Bn(fk) :=
1

n(n− 1)

∑
i 6=j

fk(Xi)(1− fk(Xj))s(Xi, Xj) = cutn(fk)

I(fk) := vol(fk)− cut(fk)
B(fk) := cut(fk)

The ratio of between- and within cluster similarity BWR is now defined as

BWRn(f) =
K∑

k=1

Bn(fk)
In(fk)

BWR(f) =
K∑

k=1

B(fk)
I(fk)

.

In this section we consider the properties

An(f) = true : ⇐⇒ ∀k ∈ {1, . . . ,K}, In(fk) > an

A(f) = true : ⇐⇒ ∀k ∈ {1, . . . ,K}, I(fk) > a.

Lemma 21 (Assumption (1) for BWR ) For f ∈ F̃n we have

P(|BWRn(f)− BWR(f)| > ε) ≤ 2Ke−
na4(min(ε,SK/a))2

8S4K2 .

Proof. Let ε ≤ a/2. If | In(fk) − I(fk)| ≤ ε and |Bn(fk) − B(fk)| ≤ ε then I(fk) ≥ a/2 > 0 (because
In(fk) > an > a since f ∈ F̃n). This implies

Bn(fk)
In(fk) −

B(fk)
I(fk) = I(fk) Bn(fk)−In(fk) B(fk)

In(fk) I(fk)

≤ I(fk)(B(fk)+ε)−(I(fk)−ε) B(fk)
In(fk) I(fk)

= ε
In(fk)

I(fk)+B(fk)
I(fk)

≤ 2Sε
a2

The analogous statement holds for B(fk)
I(fk) −

Bn(fk)
In(fk) .

So if ε ≤ S/a we have

{| In(fk)− I(fk)| ≤ a2ε/(2S)} ∩ {|Bn(fk)− B(fk)| ≤ a2ε/(2S)} ⊂ {
∣∣∣∣Bn(fk)
In(fk)

− B(fk)
I(fk)

∣∣∣∣ ≤ ε}.

Now if ε ≤ SK/a we have

P(|BWRn(f)− BWR(f)| > ε)

≤ K supk P
(∣∣∣Bn(fk)

In(fk) −
B(fk)
I(fk)

∣∣∣ | > ε/K
)

≤ K supk

(
P(| In(fk)− I(fk)| > a2ε/(2SK)) + P(|Bn(fk)− B(fk)| > a2ε/(2SK))

)
.

Using the McDiarmid inequality together with the fact that changing one point changes Bn and In by at
most S/(2n), we get for ε ≤ SK/a :

P(|BWRn(f)− BWR(f)| > ε) ≤ 4Ke−
na4ε2

8S4K2 .
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On the other hand for ε > SK/a we have
P(|BWRn(f)− BWR(f)| > ε)

≤ P(|BWRn(f)− BWR(f)| > SK/a)

≤ 4Ke−
na4(SK/a)2

8S4K2 .

So all in all we have proved the lemma. �

Lemma 22 (Assumption (2) for BWR) If an > a, an → a and
m2 log n

n(an − a)2
→ 0

then Assumption (2) of Theorem 1 is satisfied.

Proof. We will check the three assumptions of Proposition 9, using Φk(f) = I(fk) and Φk,n(f) = In(fk).
To see that Assumption (i) of Proposition 9 holds we use the following inequalities:

I(fk)− I(gk) =
∫ ∫

(fk(X)fk(Y )− gk(X)gk(Y ))s(X, Y )

≤
∫
{f=g}2 0 + S

∫
({f=g}2)c 1

= S(1− P(f = g)2)

= S(1− (1− d(f, g))2)

≤ 2Sd(f, g).

For Assumptions (ii) and (iii) we get using McDiarmid’s inequality that

P(In(fk)− I(fk) ≥ ε) ≤ e−
nε2

2S2 .

Then we apply the same method as in proof of Theorem 15. �

Lemma 23 (Assumption (3) for BWR) Assumption (3) of Theorem 1 is satisfied by BWR .

Proof. Let ε > 0, f ∈ F and g ∈ Fn. We have already proved the two following inequalities (in the proofs
of Lemmas 14 and 22) :

|B(fk)− B(gk)| ≤ 2Sd(f, g)

| I(fk)− I(gk)| ≤ 2Sd(f, g)
Now if 2Sd(f, g) ≤ a/2 then using that I(fk) > a and we get I(gk) ≥ a/2 > 0. By the same technique as
at the beginning of Lemma 21 we get

|BWR(f)− BWR(g)| ≤ 2SK

a2
2Sd(f, g).

To rewrite it we have :

d(f, g) ≤ a

4S
⇒ |BWR(f)− BWR(g)| ≤ 4S2K

a2
d(f, g).

Now recall that we want to prove that there exists δ > 0 such that d(f, g) ≤ δ ⇒ |BWR(f)−BWR(g)| ≤
ε.

If ε ≤ SK/a then we have :

d(f, g) ≤ a2

4S2K
ε ≤ a

4S
⇒ |BWR(f)− BWR(g)| ≤ 4S2K

a2
d(f, g) ≤ ε.

On the other hand if ε > SK/a then

d(f, g) ≤ a

4S
⇒ |BWR(f)− BWR(g)| ≤ 4S2K

a2
d(f, g) ≤ SK/a ≤ ε

so we have proved the lemma. �
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Theorem 24 (Consistency of nearest neighbor clustering with BWR) Assume that the similarity mea-
sure s is bounded by S, an > a, an → a,m →∞ and

m2 log n

n(an − a)2
→ 0.

Then BWR is universally weakly consistent, that is for all probability measure BWR(fn) tends to
BWR(f∗) in probability.

4.4 The objective function used by the K-means algorithm

In this section we want to study the objective function used in the K-means algorithm. The standard K-
means algorithm tries to minimize the within-cluster sum of squared distances, which we will call WSS.
This objective function can be expressed as the squared distances of all data points to the center of their
clusters. For a given clustering function f we introduce the following quantities:

WSSn(f) =
1
n

n∑
i=1

K∑
k=1

fk(Xi)‖Xi − ck,n‖2 where ck,n =
1
nk

1
n

n∑
i=1

fk(Xi)Xi

WSS(f) = E
K∑

k=1

fk(X)‖X − ck‖2 where ck =
Efk(X)X
Efk(X)

Note that nk is the same quantity as in Section 4.2.

We would like to point out some important facts. First, as in the previous cases, the empirical quality
function is not an unbiased estimator of the true one, that is E WSSn 6= WSS and Eck,n 6= ck. However, at
least we have Enk = Efk(X) and E 1

n

∑n
i=1 fk(Xi)Xi = Efk(X)X.

Secondly, our setup for proving the consistency of nearest neighbor clustering with the WSS objective
function is considerably more complicated than proving the consistency of the global minimizer of the
K-means algorithm (e.g., Pollard (1981)). The reason is that for the K-means algorithm one can use a
very helpful equivalence which does not hold for nearest neighbor clustering. Namely, if one considers the
minimizer of WSSn in the space of all possible partitions of the sample, then one can see that the clustering
constructed by this minimizer always builds a Voronoi partition with K cells of the data space; the same
holds in the limit case. In particular, given the cluster centers ck,n we can reconstruct the whole clustering
by assigning each data point to the closest cluster center. As a consequence, to prove the convergence of
K-means algorithms one usually studies the convergence of the empirical cluster centers ck,n to the true
centers ck. However, in our case this whole chain of arguments breaks down. The reason is that the clusters
chosen by nearest neighbor clustering from the set Fn are not necessarily Voronoi cells, they do not even
need to be convex (all clusters are composed by small Voronoi cells, but the union of “small” Voronoi
cells is not a “large” Voronoi cell). Also, it is not the case that each data point is assigned to the cluster
corresponding to the closest cluster centers. It may very well happen that a point x belongs to cluster Ci,
but in fact is closer to the center cj,n of another cluster Cj than to the center ci,n of its own cluster Ci.
This means that we cannot reconstruct the nearest neighbor clustering from the centers of the clusters. This
means that we cannot go over to the convergence of centers, which makes our proof considerably more
involved that the one of the standard K-means case.

It is due to the problems described above that we have to introduce again the assumption that clusters have
a certain minimal size. That is, we consider the properties

An(f) = true : ⇐⇒ ∀k ∈ {1, . . . ,K}, nk(f) > an

A(f) = true : ⇐⇒ ∀k ∈ {1, . . . ,K}, Efk(X) > a.

Moreover, for technical convenience we restrict our attention to probability measures which have a bounded
support inside some large ball, that is which satisfy supp P ⊂ B(0, A) for some constant A > 0. It is likely
that our results also hold in the general case, but the proof would get even more complicated.

Again we want to verify the conditions of Theorem 1.
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Lemma 25 (Assumption (1) for WSS) Assume that supp P ⊂ B(0, A) ⊂ Rd for some constant A > 0.
For f ∈ F̃n we have

P(|WSSn(f)−WSS(f)| > ε) ≤ 4dKe
− na2ε

18d max(1,A2)A2(A+1)2 + 2e−
8nε2

A4 .

Proof. First notice that

|WSSn(f)−WSS(f)| =

∣∣∣∣∣ 1n
n∑

i=1

K∑
k=1

fk(Xi)‖Xi − ck,n‖2 − E
K∑

k=1

fk(X)‖X − ck‖2
∣∣∣∣∣

≤

∣∣∣∣∣ 1n
n∑

i=1

K∑
k=1

fk(Xi)‖Xi − ck,n‖2 −
n∑

i=1

K∑
k=1

fk(Xi)‖Xi − ck‖2
∣∣∣∣∣

+

∣∣∣∣∣ 1n
n∑

i=1

K∑
k=1

fk(Xi)‖Xi − ck‖2 − E
K∑

k=1

fk(X)‖X − ck‖2
∣∣∣∣∣

Now we will bound the probability for each of the terms. For the second term we can simply ap-
ply McDiarmid’s inequality. Due to the assumption that supp P ⊂ B(0, A) we know that for any two
points x, y ∈ supp P we have ‖x − y‖ ≤ 2A. Thus if one changes one variable Xi then the term
1
n

∑n
i=1

∑K
k=1fk(Xi)‖Xi − ck‖2 will change by at most A2/(4n). This leads to

P

(∣∣∣∣∣ 1n
n∑

i=1

K∑
k=1

fk(Xi)‖Xi − ck‖2 − E
K∑

k=1

fk(X)‖X − ck‖2
∣∣∣∣∣ ≥ ε

)
≤ 2e−

2nε2

A4 .

Now we have to take care of the first term which is

1
n

n∑
i=1

K∑
k=1

fk(Xi)
(
‖Xi − ck,n‖2 − ‖Xi − ck‖2

)
.

The triangle inequality gives

‖Xi − ck,n‖2 ≤ (‖Xi − ck‖+ ‖ck,n − ck‖)2

and together with the fact that supp P ⊂ B(0, A) this leads to

‖Xi − ck,n‖2 − ‖Xi − ck‖2 ≤ 6A‖ck,n − ck‖.

So at this point we have :∣∣∣∣∣ 1n
n∑

i=1

K∑
k=1

fk(Xi)‖Xi − ck,n‖2 − ‖Xi − ck‖2
∣∣∣∣∣ ≤ 6A sup

k
‖ck,n − ck‖.

We will denote the j-th coordinate of a vector X by Xj . Recall that d denotes the dimensionality of our
space. Using this notation we have

‖ck,n − ck‖2 =
d∑

j=1

(
Efk(X)Xj

Efk(X)
− 1

nk

1
n

n∑
i=1

fk(Xi)X
j
i

)2

.

Our goal will be to apply the McDiarmid inequality for each coordinate. Before we can do this, we want to
show that

{|nk − Efk(X)| ≤ aε
A+1} ∩ {| 1n

n∑
i=1

fk(Xi)X
j
i − Efk(X)Xj | ≤ aε

A + 1
} ⊂ {|cj

k − cj
k,n| ≤ ε}.
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To this end, assume that |nk − Efk(X)| ≤ ε and | 1n
n∑

i=1

fk(Xi)X
j
i − Efk(X)Xj | ≤ ε.

In case Efk(X) 6= 0 we have

cj
k − cj

k,n =
nkEfk(X)Xj − Efk(X) 1

nk

1
n

∑n
i=1fk(Xi)X

j
i

nkEfk(X)

≤ (Efk(X) + ε)Efk(X)Xj − Efk(X)(Efk(X)Xj − ε)
nkEfk(X)

=
ε

nk

Efk(X)Xj + Efk(X)
Efk(X)

≤ (A + 1)ε
a

and similarly for cj
k,n − cj

k.

On the other hand, in case Efk(X) = 0 we also have Efk(X)Xj = 0 (as fk is a non-negative function and
|X| is bounded by A). Together with the assumption this means that 1

n

∑n
i=1fk(Xi)X

j
i ≤ ε. This implies

|cj
k − cj

k,n| =
1
nk

1
n

n∑
i=1

fk(Xi)X
j
i ≤

ε

a
≤ (A + 1)ε

a

which shows the inclusion stated above. The McDiarmid inequality now yields the two statements

P(|nk − Efk(X)| > ε) ≤ 2e−2nε2

P

(∣∣∣∣∣ 1n
n∑

i=1

fk(Xi)X
j
i − Efk(X)Xj

∣∣∣∣∣ > ε

)
≤ 2e−

2nε2

A2

Together they show that for the coordinate-wise differences

P(|cj
k − cj

k,n| > ε) ≤ 2e
− 2na2ε2

(A+1)2 + 2e
− 2na2ε2

A2(A+1)2 ≤ 4e
− 2na2ε2

max(1,A2)(A+1)2 .

This leads to

P(‖ck − ck,n‖ > ε) = P(
d∑

j=1

|cj
k − cj

k,n|
2 > ε2) ≤ d sup

j
P(|cj

k − cj
k,n| > ε/

√
d)

≤ 4de
− 2na2ε2

d max(1,A2)(A+1)2 .

Combining all this leads to a bound for the first term of the beginning of the proof:

P
(∣∣∣ 1n∑n

i=1

∑K
k=1fk(Xi)

(
‖Xi − ck,n‖2 − ‖Xi − ck‖2

)∣∣∣ ≥ ε
)

≤ P (supk ‖ck,n − ck‖ ≥ ε/(6A))

≤ K supk P(‖ck,n − ck‖ ≥ ε/(6A))

≤ 4dKe
− na2ε2

18d max(1,A2)A2(A+1)2 .

To finish the proof we now combine the probabilities for the first and the second term from the beginning
of the proof using a union bound. �

Lemma 26 (Assumption (2) for WSS) We have

P(A(fn)c) ≤ 2Km+1(2n)(d+1)m2 e−
n(an−a)2

8

1− e−
n(an−a)2

2

.

If additionally we have a∗n > 0 (recall the definition of a∗n in Lemma 8) then

P(An(f̃∗k )c ≤ an) ≤ 4K
a∗n

e−mb(a∗n/2) + 2Km+1(2n)(d+1)m2 e−
na∗n

2

32

1−e−
na∗n

2

8

.
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Proof. We will use the Proposition 10 with Φk(f) = Efk(X) and Φk,n = nk. Clearly Assumption (i) of
Proposition 9 is satisfied since |Efk(X)−Egk(X)| ≤ d(f, g). Moreover, to bound the terms that appear in
the bound of Proposition 10 we use the McDiarmid inequality to get that for all ∀g ∈ F̂ and ∀ε > 0 :

P(nk(g)− Egk(X) ≥ ε) ≤ e−2nε2 .

Plugging this into Proposition 10 proves the lemma. �

Lemma 27 (Assumption (3) for WSS) Assume that supp P ⊂ B(0, A) for some constant A > 0. Let
f ∈ F and g ∈ Fn. Then we have

|WSS(f)−WSS(g)| ≤ 4A2(1 + 3/a)d(f, g).

Proof. We begin with the following inequality, which can be seen by splitting the expectation in the part
where {f = g} and {f 6= g} and using the fact that supp P ⊂ B(0, A):

|WSS(f)−WSS(g)| = |E
∑K

k=1fk(X)‖X − ck(f)‖2 − gk(X)‖X − ck(g)‖2|

≤ 4A2d(f, g) +
∫
{f=g}

∑K
k=1fk(X)

(
‖X − ck(f)‖2 − ‖X − ck(g)‖2

)
.

For the second term we have already seen in the proof of the previous lemma that ‖X − ck(f)‖2 − ‖X −
ck(g)‖2 ≤ 6A‖ck(f)− ck(g)‖. So for the moment we have

|WSS(f)−WSS(g)| ≤ 4A2d(f, g) + 6A sup
k
‖ck(f)− ck(g)‖.

Now we want to bound the expression ‖ck(f) − ck(g)‖. First of all, observe that |Efk(X) − gk(X)| ≤
d(f, g) and ‖Efk(X)X − gk(X)X‖ ≤ Ad(f, g).

In case Egk(X) 6= 0 we have

‖ck(f)− ck(g)‖ =
‖Egk(X)Efk(X)X − Efk(X)Egk(X)X‖

Efk(X)Egk(X)

≤ ‖Egk(X) (Efk(X)X − Egk(X)X) ‖+ ‖ (Egk(X)− Efk(X)) Egk(X)X‖
Efk(X)Egk(X)

≤ Egk(X)‖Efk(X)X − gk(X)X‖+ AEgk(X)|Egk(X)− fk(X)|
Efk(X)Egk(X)

≤ 2A

Efk(x)
d(f, g)

≤ 2A

a
d(f, g)

On the other hand, in case Egk(X) = 0 we also have Egk(X)X = 0 (as gk is a non-negative function and
|X|R is bounded by A). This leads to

‖ck(f)− ck(g)‖ = ‖Efk(X)X
Efk(X)

− Egk(X)X
Egk(X)

‖ = ‖Efk(X)X
Efk(X)

‖ ≤ A

a
d(f, g) ≤ 2A

a
d(f, g)

Combining all results leads to the lemma. �

Now we can finally state the consistency theorem and a rate of convergence for nearest neighbor clustering
using the WSS objective function. The proofs simply combine the lemmas analogously to the previous
sections.

Theorem 28 (Consistency of nearest neighbor clustering with WSS) Assume that an > a, an →
a,m →∞ and

m2 log n

n(a− an)2
→ 0.

Then for all probability measures on Rd with bounded support, nearest neighbor clustering with WSS is
consistent, that is if n →∞ then WSS(fn) tends to WSS(f∗) in probability.
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Remark It is straight forward to see that this theorem is still valid if we consider the objective functions
WSSn and WSS with ‖ · ‖ instead of ‖ · ‖2. It also holds for any other norm, such as the p-norms ‖ · ‖p.
However, it does not necessarily hold for powers of norms (in this sense, the squared (!) Euclidean norm is
an exception). The most crucial property is that we need to be able to bound

‖Xi − ck,n‖ − ‖Xi − ck‖ ≤ const · ‖ck,n − ck‖.

This is straight forward if the triangle inequality holds, but might not be possible for general powers of
norms.

Theorem 29 (Convergence Rate of nearest neighbor clustering using WSS) Assume that supp P ⊂
B(0, A) for some constant A > 0. Let N and a∗n be defined as in Lemma 8 . Then for n ≥ N the
following bound holds true:

P(|WSS(fn)−WSS(f∗)| ≥ ε)

≤ 2Km+1(2n)(d+1)m2

(
4dKe

− na2ε
616d max(1,A2)A2(A+1)2 +2e

− nε2

32A4

1−4dKe
− na2ε

308d max(1,A2)A2(A+1)2 −2e
− nε2

8A4

+ Ke−
n(an−a)2

8

1−e−
n(an−a)2

2

+ Ke−
na∗n

2

32

1−e−
na∗n

2

8

)

+ 4K
a∗n

e−mb(a∗n/2) + (16A2(1 + 3/a)/ε)e−mb(ε/(8A2(1+3/a))).
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