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Abstract

Graph clustering methods such as spectral clustering are defined for general
weighted graphs. In machine learning, however, data often is not given in form
of a graph, but in terms of similarity (or distance) values between points. In this
case, first a neighborhood graph is constructed using the similarities between the
points and then a graph clustering algorithm is applied to this graph. In this pa-
per we investigate the influence of the construction of the similarity graph on
the clustering results. We first study the convergence of graph clustering crite-
ria such as the normalized cut (Ncut) as the sample size tends to infinity. We
find that the limit expressions are different for different types of graph, for exam-
ple the r-neighborhood graph or the k-nearest neighbor graph. In plain words:
Ncut on a kNN graph does something systematically different than Ncut on an
r-neighborhood graph! This finding shows that graph clustering criteria cannot be
studied independently of the kind of graph they are applied to. We also provide
examples which show that these differences can be observed for toy and real data
already for rather small sample sizes.

1 Introduction

In many areas of machine learning such as clustering, dimensionality reduction, or semi-supervised
learning, neighborhood graphs are used to model local relationships between data points and to build
global structure from local information. The easiest and most popular neighborhood graphs are the
r-neighborhood graph, in which every point is connected to all other points within a distance of r,
and the k-nearest neighbor (kNN) graph, in which every point is connected to the k closest neigh-
boring points. When applying graph based machine learning methods to given sets of data points,
there are several choices to be made: the type of the graph to construct (e.g., r-neighborhood graph
or kNN graph), and the connectivity parameter (r or k, respectively). However, the question how
these choices should be made has received only little attention in the literature. This is not so severe
in the domain of supervised learning, where parameters can be set using cross-validation. However,
it poses a serious problem in unsupervised learning. While different researchers use different heuris-
tics and their “gut feeling” to set these parameters, neither systematic empirical studies have been
conducted (for example: how sensitive are the results to the graph parameters?), nor do theoretical
results exist which lead to well-justified heuristics. Our goal in this paper is to address the theoretical
side of this question in the context of graph based clustering.

In this work, we consider clustering in a statistical setting: we assume that a finite set of data
points has been sampled from some underlying distribution. Ultimately, what we want to find is a
good clustering of the underlying data space. We assume that the quality of a clustering is defined
by some clustering objective function. In this paper we focus on the case of the normalized cut
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objective function Ncut (Shi and Malik, 2000) and on the question if and how the results of graph
based clustering algorithms are affected by the graph type and the parameters that are chosen for the
construction of the neighborhood graph.

To this end, we first want to study the convergence of the clustering criterion (Ncut) on different
kinds of graphs (kNN graph and r-neighborhood graph), as the sample size tends to infinity. To our
own surprise, when studying this convergence it turned out that, depending on the type of graph,
the normalized cut converges to different limit values! That is, the (suitably normalized) values of
Ncut tend to a different limit functional, depending on whether we use the r-neighborhood graph or
the kNN graph on the finite sample. Intuitively, what happens is as follows: On any given graph,
the normalized cut is one unique, well-defined mathematical expression. But of course, given a
fixed partition of a sample of points, this Ncut value is different for different graphs constructed
on the sample (different graph constructions put different numbers of edges between points, which
leads to different Ncut values). It can now be shown that even after appropriate rescaling, such
differences remain visible in the limit for the sample size tending to infinity. For example, we will
see that depending on the type of graph, the limit criterion integrates over different powers of the
density. This can lead to the effect that the minimizer of Ncut on the kNN graph is different from
the minimizer of Ncut on the r-graph.

This means that ultimately, the question about the “best Ncut” clustering, given infinite amount of
data, has different answers, depending on which underlying graph we use! This observation opens
Pandora’s box on clustering criteria: the “meaning” of a clustering criterion does not only depend
on the exact definition of the criterion itself, but also on how the graph on the finite sample is
constructed. In the case of Ncut this means that Ncut is not just “one well-defined criterion”, but
it corresponds to a whole bunch of criteria, which differ depending on the underlying graph. More
sloppy: Ncut on a kNN graph does something different than Ncut on an r-neighborhood graph!

The first part of our paper is devoted to the mathematical derivation of our results. We investigate
how and under which conditions the Ncut criterion converges on the different graphs, and what
the corresponding limit expressions are. The second part of our paper shows that these findings
are not only of theoretical interest, but that they also influence concrete algorithms such as spectral
clustering in practice. We give examples of well-clustered distributions (mixtures of Gaussians),
where the optimal limit cut on the kNN graph is different from the one on the r-neighborhood
graph. Moreover, these results can be reproduced with finite samples. That is, given a finite sample
from some well-clustered distribution, normalized spectral clustering on the kNN graph produces
systematically different results from spectral clustering on the r-neighborhood graph.

2 Definitions and assumptions

Given a graph G = (V,E) with weights w : E → R and a partition of the nodes V into (C, V \ C)
we define cut(C, V \ C) =

∑
u∈C,v∈V \C w(u, v) + w(v, u), vol(C) =

∑
u∈C,v∈V w(u, v), and

Ncut(C, V \ C) = cut(C, V \ C)
(

1
vol(C)

+
1

vol(V \ C)

)
.

Given a finite set of points x1, . . . , xn we consider two main types of neighborhood graphs:

• the r-neighborhood graph Gn,r: there is an edge from point xi to point xj if dist(xi, xj) ≤ r
for all 1 ≤ i, j ≤ n, i 6= j.

• the directed k-nearest neighbor graph Gn,k: there is a directed edge from xi to xj if xj is one of
the k nearest neighbors of xi for 1 ≤ i, j ≤ n, i 6= j.

In the following we work on the space Rd with Euclidean metric dist. We denote by ηd the volume
of the d-dimensional unit ball in Rd and by B(x, r) the ball with radius r centered at x. On the
space Rd we will study partitions which are induced by some hypersurface S. Given a surface S
which separates the data points in two non-empty parts C+ and C−, we denote by cutn,r(S) the
number of edges in Gn,r that go from a sample point on one side of the surface to a sample point on
the other side of the surface. The corresponding quantity for the directed k-nearest neighbor graph
is denoted by cutn,k(S). For a set A ⊆ Rd the volume of {x1, . . . , xn} ∩ A in the graph Gn,r is
denoted by voln,r(A), and correspondingly voln,k(A) in the graph Gn,k.
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General assumptions in the whole paper: The data points x1, ..., xn are drawn independently
from some density p on Rd. This density is bounded from below and above, that is 0 < pmin ≤
p(x) ≤ pmax. In particular, it has compact support C. We assume that the boundary ∂C of C
is well-behaved, that means it is a set of Lebesgue measure 0 and we can find a constant γ > 0
such that for r sufficiently small, vol(B(x, r) ∩ C) ≥ γ vol(B(x, r)) for all x ∈ C. Furthermore
we assume that p is twice differentiable in the interior of C and that the derivatives are bounded.
The measure on Rd induced by p will be denoted by µ, that means, for a measurable set A we set
µ(A) =

∫
A
p(x)dx. For the cut surface S, we assume that the volume of S ∩ ∂C with respect to the

(d − 1)-dimensional measure on S is a set of measure 0. Moreover, S splits the space Rd into two
sets C+ and C− with positive probability mass.

While the setting introduced above is very general, we make some substantial simplifications in this
paper. First, we consider all graphs as unweighted graphs (the proofs are already technical enough
in this setting). We have not yet had time to prove the corresponding theorems for weighted graphs,
but would expect that this might lead yet to other limit expressions. This will be a point for future
work. Moreover, in the case of the kNN-graph we consider the directed graph for simplicity. Some
statements can be carried over by simple arguments from the directed graph to the symmetric graph,
but not all of them. In general, we study the setting where one wants to find two clusters which
are induced by some hypersurface in Rd. In this paper we only consider the case where S is a
hyperplane. Our results can be generalized to more general (smooth) surfaces, provided one makes
a few assumptions on the regularity of the surface S. The proofs are more technical, though.

3 Limits of quality measures

In this section we study the asymptotic behavior of the quantities introduced above for both the
unweighted directed kNN graph and the unweighted r-graph. Due to the lack of space we only
provide proof sketches; detailed proofs can be found in the supplement Maier et al. (2008).

Let (kn)n∈N be an increasing sequence. Given a finite sample x1, ..., xn from the underlying dis-
tribution, we will construct the graph Gn,kn

and study the convergence of Ncutn,kn
(S), that is the

Ncut value induced by S, evaluated on the graph Gn,kn
. Similarly, given a sequence (rn)n∈N of

radii, we consider the convergence of Ncutn,rn
induced by S on the graph Gn,rn

. In the following∫
S

ds denotes the (d− 1)-dimensional surface integral along S. Here is our main result:

Theorem 1 (Limit values of Ncut on different graphs) Assume the general assumptions hold for
the density p on Rd and a fixed hyperplane S in Rd. Consider the sequences (kn)n∈N ⊂ N and
(rn)n∈N ⊂ R. For the kNN graph, assume that kn/n→ 0. In case d = 1, assume that kn/

√
n→

∞, in case d ≥ 2 assume kn/ log n→∞. Then we have for n→∞

d

r
n

kn
Ncutn,kn(S)

a.s.−→ 2ηd−1

(d+ 1)η
1+1/d
d

Z
S

p1−1/d(s)ds

„“Z
C+

p(x)dx
”−1

+
“Z

C−
p(x)dx

”−1
«
.

For the r-neighborhood graph, assume rn > 0, rn → 0 and nrd+1
n →∞ for n→∞. Then

1

rn
Ncutn,rn(S)

a.s.−→ 2ηd−1

(d+ 1)ηd

Z
S

p2(s)ds

„“Z
C+

p2(x)dx
”−1

+
“Z

C−
p2(x)dx

”−1
«
.

Proof (Sketch for the case of the kNN graph, the case of the r graph is similar. Details see Maier
et al., 2008.). Define the scaling factors ccut(n, kn) = n−1+1/dk−1−1/d and cvol(n, kn) =
(nkn)−1. Then, (n/kn)1/d Ncut(S) can be decomposed in cut and volume term:(

ccut(n, kn) cutn,kn(S)
)
·
(
(cvol(n, kn) voln,kn(C+))−1 + (cvol(n, kn) voln,kn(C−))−1

)
.

In Proposition 3 below we will see that the volume term satisfies

cvol(n, kn) voln,kn(C+) a.s.−→
∫
C+

p(x)dx,

and the corresponding expression holds for C−. For the cut term we will prove below that

ccut(n, kn) cutn,kn
(S) a.s.−→ 2ηd−1

(d+ 1)η1+1/d
d

∫
S

p1−1/d(s)ds. (1)
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This will be done using a standard decomposition into variance and bias term, which will be treated
in Propositions 1 and 2, respectively. �

Proposition 1 (Limit values of E cutn,kn
and E cutn,rn

) Let the general assumptions hold, and S
be an arbitrary, but fixed hyperplane. For the kNN graph, if kn/n → 0 and kn/ log n → ∞ for
n→∞, then

E
(

1
nkn

d

√
n

kn
cutn,kn

(S)
)
→ 2ηd−1

d+ 1
η
−1−1/d
d

∫
S

p1−1/d(s)ds.

For the r-neighborhood graph, if rn → 0, rn > 0 for n→∞, then

E
(

cutn,rn(S)
n2rd+1

n

)
→ 2ηd−1

d+ 1

∫
S

p2(s)ds.

Proof (Sketch, see Maier et al., 2008) . We start with the case of the r-neighborhood graph. By Ni
(i = 1, ..., n) denote the number of edges in the graph that start in point xi and end in some point
on the other side of the cut surface S. As all points are sampled i.i.d, we have

E
(
cutn,rn(S)

)
=

∑n
i=1 ENi = nEN1.

Suppose the position of the first point is x. The idea to compute the expected number of edges
originating in x is as follows. We consider a ball B(x, rn) of radius rn around x (where rn is the
current parameter of the r-neighborhood graph). The expected number of edges originating in x
equals the expected number of points which lie in the intersection of this ball with the other side of
the hyperplane. That is, setting

g(x, rn) =
{
µ
(
B(x, rn) ∩ C+

)
if x ∈ C−

µ
(
B(x, rn) ∩ C−

)
if x ∈ C+

we have E(N1|X1 = x) = (n − 1)g(x, rn), since the number of points in the intersection of
B(x, rn) with the other side of the hyperplane is binomially distributed with parameters n − 1 and
g(x, rn). Integrating this conditional expectation over all positions of the point x in Rd gives

E
(
cutn,rn(S)

)
= n(n− 1)

∫
Rd

g(x, rn)p(x)dx.

The second important idea is that instead of integrating over Rd, we first integrate over the hyper-
plane S and then, at each point s ∈ S, along the normal line through s, that is the line s+ t~n, t ∈ R,
where ~n denotes the normal vector of the hyperplane pointing towards C+. This leads to

n(n− 1)
∫

Rd

g(x, rn)p(x)dx = n(n− 1)
∫
S

∫ ∞
−∞

g(s+ t~n, rn)p(s+ t~n) dt ds.

This has two advantages. First, if x is far enough from S (that is, dist(x, s) > rn for all s ∈ S),
then g(x, rn) = 0 and the corresponding terms in the integral vanish. Second, if x is close to s ∈ S
and the radius rn is small, then the density on the ball B(x, rn) can be considered approximately
homogeneous, that is p(y) ≈ p(s) for all y ∈ B(x, rn). Thus,∫ ∞

−∞
g(s+ t~n, rn)p(s+ t~n) dt =

∫ rn

−rn

g(s+ t~n, rn)p(s+ t~n) dt

≈ 2
∫ rn

0

p(s) vol
(
B(s+ t~n, rn) ∩ C−

)
p(s) dt.

It is not hard to see that vol
(
B(s+ t~n, rn)∩C−

)
= rdnA(t/rn), whereA(t/rn) denotes the volume

of the cap of the unit ball capped at distance t/rn. Solving the integrals leads to∫ rn

0

vol
(
B(s+ t~n, rn) ∩ C−

)
dt = rd+1

n

∫ 1

0

A(t)dt = rd+1
n

ηd−1

d+ 1
.

Combining the steps above we obtain the result for the r-neighborhood graph.
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In the case of the kNN graph, the proof follows a similar principle. We have to replace the radius
rn by the k-nearest neighbor radius, that is, the distance of a data point to its kth nearest neighbor.
This leads to additional difficulties, as this radius is a random variable as well. By a technical
lemma one can show that for large n, under the condition kn/ log n → ∞ we can replace the
integration over the possible values of the kNN radius by its expectation. Then we observe that as
kn/n → 0, the expected kNN radius converges to 0, that is for large n we only have to integrate
over balls of homogeneous density. In a region of homogeneous density p̃, the expected kNN
radius is given as (k/((n−1)ηdp̃))1/d. Now similar arguments as above lead to the desired result. �

Proposition 1 already shows one of the most important differences between the limits of the expected
cut for the different graphs: For the r-graph we integrate over p2, while we integrate over p1−1/d

for the kNN graph. This difference comes from the fact that the kNN-radius is a random quantity,
which is not the case for the deterministically chosen radius rn in the r-graph.

Proposition 2 (Deviation of cutn,kn
and cutn,rn

from their means) Let the general assumptions
hold. For the kNN graph, if the dimension d = 1 then assume kn/

√
n → ∞, for d ≥ 2 assume

kn/ log n→∞. In both cases let kn/n→ 0. Then∣∣∣ 1
nkn

d

√
n

kn
cutn,kn

(S)− E
( 1
nkn

d

√
n

kn
cutn,kn

(S)
)∣∣∣ a.s.−→ 0.

For the r-neighborhood graph, let rn > 0, rn → 0 such that nrd+1
n →∞ for n→∞. Then∣∣∣ 1

n2rd+1
n

cutn,rn
(S)− E

( 1
n2rd+1

n

cutn,rn
(S)
)∣∣∣ a.s.−→ 0.

Proof (Sketch, details see Maier et al., 2008). Using McDiarmid’s inequality (with a kissing
number argument to obtain the bounded differences condition) or a U-statistics argument leads to
exponential decay rates for the deviation probabilities (and thus to convergence in probability). The
almost sure convergence can then be obtained using the Borel-Cantelli lemma. �

Proposition 3 (Limits of voln,kn
and voln,rn

) Let the general assumptions hold, and H ⊆ Rd an
arbitrary measurable subset. Then, as n→∞, for the kNN graph we have

1
nkn

voln,kn
(H) a.s.−→ µ(H).

For the r-neighborhood graph, if nrd →∞ we have
1

n2rdn
voln,rn

(H) a.s.−→ ηd

∫
H

p2(x)dx.

Proof. In the graph Gn,kn there are exactly k outgoing edges from each node. Thus the expected
number of edges originating in H depends on the number of sample points in H only, which
is binomially distributed with parameters n and µ(H). For the graph Gn,rn

we decompose the
volume into the contributions of all the points, and for a single point we condition on its location.
The number of outgoing edges, provided the point is at position x, is the number of other points
in B(x, rn), which is binomially distributed with parameters (n − 1) and µ(B(x, rn)). If rn is
sufficiently small we can approximate µ(B(x, rn)) by ηdrdnp(x) under our conditions on the density.
Almost sure convergence is proved using McDiarmid’s inequality or a U-statistics argument. �

Other convergence results. In the literature, we only know of one other limit result for graph cuts,
proved by Narayanan et al. (2007). Here the authors study the case of a fully connected graph with
Gaussian weights wt(xi, xj) = 1/(4πt)d/2 exp(−dist(xi − xj)2/4t). Denoting the corresponding
cut value by cutn,t, the authors show that if tn → 0 such that tn > 1/n1/(2d+2), then

√
π

n
√
tn

cutn,tn →
∫
S

p(s) ds a.s.

Comparing this result to ours, we can see that it corroborates our finding: yet another graph leads to
yet another limit result (for cut, as the authors did not study the Ncut criterion).
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4 Examples where different limits of Ncut lead to different optimal cuts

In Theorem 1 we have proved that the kNN graph leads to a different limit functional for Ncut(S)
than the r-neighborhood graph. Now we want to show that this difference is not only a mathematical
subtlety without practical relevance. We will see that if we select an optimal cut based on the limit
criterion for the kNN graph we can obtain a different result than if we use the limit criterion based
on the r-neighborhood graph. Moreover, this finding does not only apply to the limit cuts, but also
to cuts constructed on finite samples. This shows that on finite data sets, different constructions of
the graph can lead to systematic differences in the clustering results.

Consider Gaussian mixture distributions in one and two dimensions of the form∑3
i=1 αiN([µi, 0, . . . , 0], σiI) which are set to 0 where they are below a threshold θ (and

properly rescaled), with specific parameters

dim µ1 µ2 µ3 σ1 σ1 σ1 α1 α2 α3 θ
1 0 0.5 1 0.4 0.1 0.1 0.66 0.17 0.17 0.1
2 −1.1 0 1.3 0.2 0.4 0.1 0.4 0.55 0.05 0.01

For density plots, see Figure 1. We first investigate the theoretic limit Ncut values, for hyperplanes
which cut perpendicular to the first dimension (which is the “informative” dimension of the data).
For the chosen densities, the limit Ncut expressions from Theorem 1 can be computed analytically.
The plots in Figure 2 show the theoretic limits. In particular, the minimal Ncut value in the kNN
case is obtained at a different position than the minimal value in the r-neighborhood case.

This effect can also be observed in a finite sample setting. We sampled n = 2000 points from the
given distributions and constructed the (unweighted) kNN graph (we tried a range of parameters of
k and r, our results are stable with respect to this choice). Then we evaluated the empirical Ncut
values for all hyperplanes which cut perpendicular to the informative dimension, similar as in the
last paragraph. This experiment was repeated 100 times. Figure 2 shows the means of the Ncut
values of these hyperplanes, evaluated on the sample graphs. We can see that the empirical plots are
very similar to the limit plots produced above.

Moreover, we applied normalized spectral clustering (cf. von Luxburg, 2007) to the mixture data
sets. Instead of the directed kNN graph we used the undirected one, as standard spectral clustering is
not defined for directed graphs. We compare different clusterings by the minimal matching distance:

dMM (Clust1,Clust2) = min
π

(∑n
i=1 1Clust1(xi) 6=π(Clust2(xi))

)
/(2n)

where the minimum is taken over all permutations π of the labels. In the case of two clusters, this
distance corresponds to the 0-1-loss as used in classification: a minimal matching distance of 0.38,
say, means that 38% of the data points lie in different clusters. In our spectral clustering experiment,
we could observe that the clusterings obtained by spectral clustering are usually very close to the
theoretically optimal hyperplane splits predicted by theory (the minimal matching distances to the
optimal hyperplane splits were always in the order of 0.03 or smaller). As predicted by theory, both
kinds of graph give different cuts in the data. An illustration of this phenomenon for the case of
dimension 2 can be found in Figure 3. To give a quantitative evaluation of this phenomenon, we
computed the mean minimal matching distances between clusterings obtained by the same type of
graph over the different samples (denoted dkNN and dr), and the mean difference dkNN−r between
the clusterings obtained by different graph types:

Example dkNN dr dkNN−r
1 dim 0.00039± 0.0005 0.0005± 0.00045 0.32± 0.012
2 dim 0.0029± 0.0013 0.0005± 0.0005 0.48± 0.045

We can see that for the same graph, the clustering results are very stable (differences in the order of
10−3) whereas the differences between the kNN graph and the r-neighborhood graph are substantial
(0.32 and 0.48, respectively). This difference is exactly the one induced by assigning the middle
mode of the density to different clusters, which is the effect predicted by theory.

It is tempting to conjecture that these effects might be due to the fact that the number of Gaussians
and the number of clusters we are looking for do not 0. But this is not the case: for a sum of two
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Figure 1: Densities in the examples. In the two-dimensional case, we plot the informative dimension
(marginal over the other dimensions) only. The dashed blue vertical line depicts the optimal limit
cut of the r-graph, the solid red vertical line the optimal limit cut of the kNN graph.
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Figure 2: Ncut values for hyperplanes: theoretical predictions (dashed) and empirical means (solid).
The optimal cut is indicated by the dotted line. The top row shows the results for the kNN graph,
the bottom row for the r-graph. In the left column the result for one dimension, in the right column
for two dimensions.

Gaussians in one dimension with means 0.2 and 0.4, variances 0.05 and 0.03, weights 0.8 and 0.2,
and a threshold of 0.1 the same effects can be observed.

Finally, we conducted an experiment similar to the last one on two real data sets (breast cancer and
heart from the Data Repository by G. Rätsch). Here we chose the parameters k = 20 and r = 3.2
for breast cancer and r = 4.3 for heart (among the parameters we tried, these were the parameters
where the results were most stable, that is where dkNN and dr were minimal). Then we ran spectral
clustering on different subsamples of the data sets (n = 200 for breast cancer, n = 170 for heart). To
evaluate whether our clusterings were any useful at all, we computed the minimal matching distance
between the clusterings and the true class labels and obtained distances of 0.27 for the r-graph and
0.44 for the kNN graph on breast cancer and 0.17 and 0.19 for heart. These results are reasonable
(standard classifiers lead to classification errors of 0.27 and 0.17 on these data sets). Moreover, to
exclude other artifacts such as different cluster sizes obtained with the kNN or r-graph, we also
computed the expected random distances between clusterings, based on the actual cluster sizes we
obtained in the experiments. We obtained the following table:

Example dkNN rand. dkNN dr rand. dr dkNN−r rand. dkNN−r

breast canc. 0.13 ± 0.15 0.48 ± 0.01 0.40 ± 0.10 0.22 ± 0.01 0.40 ± 0.10 0.44 ± 0.01
heart 0.06 ± 0.02 0.47 ± 0.02 0.06 ± 0.02 0.44 ± 0.02 0.07 ± 0.03 0.47 ± 0.02

We can see that in the example of breast cancer, the distances dkNN and dr are much smaller than the
distance dkNN−r. This shows that the clustering results differ considerably between the two kinds
of graph (and compared to the expected random effects, this difference does not look random at all).
For heart, on the other side, we do not observe significant differences between the two graphs.
This experiment shows that for some data sets a systematic difference between the clusterings based
on different graph types exists. But of course, such differences can occur for many reasons. The
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Figure 3: Results of spectral clustering in two dimensions, for r-graph (left) and kNN graph (right)

different limit results might just be one potential reason, and other reasons might exist. But whatever
the reason is, it is interesting to observe these systematic differences between graph types in real data.

5 Discussion

In this paper we have investigated the influence of the graph construction on graph-based clustering
measures such as the normalized cut. We have seen that depending on the type of graph, the Ncut
criterion converges to different limit results. In our paper, we computed the exact limit expressions
for the r-neighborhood graph and the kNN graph. 2, yet a different limit result for a complete
graph using Gaussian weights exists in the literature (Narayanan et al., 2007). The fact that all
these different graphs lead to different clustering criteria shows that these criteria cannot be studied
isolated from the graph they will be applied to.

From a theoretical side, there are several directions in which our work can be improved. Some
technical improvements concern using the symmetric instead of the directed kNN graph, and adding
weights to the edges. In the supplement (Maier et al., 2008) we also prove rates of convergence for
our results. It would be interesting to use these to determine an optimal choice of the connectivity
parameter k or r of the graphs (we have already proved such results in a completely different graph
clustering setting, cf. Maier et al., 2007). Another extension which does not look too difficult
is obtaining uniform convergence results. Here one just has to take care that one uses a suitably
restricted class of candidate surfaces S (note that uniform convergence results over the set of all
partitions of Rd are impossible, cf. von Luxburg et al., 2008).

For practice, it will be important to study how the different limit results influence clustering results.
So far, we do not have much intuition about when the different limit expressions lead to different
optimal solutions, and when these solutions will show up in practice. The examples we provided
above already show that different graphs indeed can lead to systematically different clusterings in
practice. Gaining more understanding of this effect will be an important direction of research if one
wants to understand the nature of different graph clustering criteria.
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