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1 Definitions and assumptions (as in paper)

For the reader’s convenience we repeat the corresponding section from the paper. Note,
however, that in the rest of the supplemental material we omit the surface S in the
expressions for the cut, the volume and NCut. This is possible because we always
study these quantities for a fixed surface.

Given a graph G = (V, E) with weights w : E — R and a partition of the nodes V'
into (C,V \ C) we define

Neut(C,V\ C) = cut(C,V\ C) (voll(C) * VOI(; \O) >’

where

cut(C,V\C) =3 covevo w(u,v) and vol(C) =3 ccwey WU, ).

In this paper we focus on Ncut, but the methods used here can easily be carried over
to the study of other measures.

Given a finite sample z1,...,x, we can construct different types of neighborhood
graphs:

e the r-neighborhood graph G, ,: there is an edge from a point z; to a point z; if
dist(z;,z;) < r for all 1 < 4,5 < mn,i # j. This graph is always undirected, as
distances are symmetric.

o the directed k-nearest neighbor graph G, : there is a directed edge from z; to x;
if ; is one of the k nearest neighbors of z; for 1 <4, j <mn,i # j.
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e the symmetric k-nearest neighbor graph: there is an undirected edge from z; to x;
if the directed k-nearest neighbor graph contains a directed edge from x; to z; or
vice versa.

In the following we work on the space R? with Euclidean metric dist. We denote
by 14 the volume of the d-dimensional unit ball in R? and by B(x,r) the ball with
radius r centered at 2. On the space R? we will study partitions which are induced
by some hypersurface S. Given a surface S which separates the data points in two
non-empty parts C* and C~, we denote by cut,, ,(5) the number of edges in G, , that
go from a sample point on one side of the surface to a sample point on the other side
of the surface. The corresponding quantity for the directed k-nearest neighbor graph
is denoted by cut,, x(S). For a set A C R? the volume of points in {z1,...,2,} N A in
the graph G,, , is denoted by vol,, (A). Similarly, vol,, (A) denotes the corresponding
volume in the graph G, ;. In the rest of the paper we make the following

General assumptions: The data points x1,...,x, are drawn independently from
some density p on R%. This density is bounded from below and above, that is 0 < pmin <
p(2) < Pmax- In particular, it has compact support C. We assume that the boundary
0C of C is well-behaved, that means it is a set of Lebesgue measure 0 and we can find
a constant v > 0 such that for r sufficiently small, vol(B(x,r) N C) > ~yvol(B(z,r))
for all x € C. Furthermore we assume that p is twice differentiable in the interior
of C' and that the derivatives are bounded. The measure on R? induced by p will be
denoted by pu, that means, for a measurable set A we set p(A) = [, p(x)dx. For the cut
surface S, we assume that the volume of SNOC with respect to the (d—1)-dimensional
measure on S is a set of measure 0.

In general, we study the setting where one wants to find two clusters which are in-
duced by some hypersurface in R%. As cut surfaces we only consider hyperplanes in
this work, that is a clustering on the data points is induced by some hyperplane in
RZ. Our results can be generalized to more general (smooth) surfaces, provided one
makes a few assumptions on the regularity of the surface S. The proofs will be more
technical, though.

2 Limit of Ecut,,,,

Proposition 1 (Limit of Ecut, ., ) Under the assumptions:

o pl .. s the mazimum of the absolute value of the directional derivative (over all
directions) of p,

o 1, is sufficiently small, such that pl,..Tn < DPmax, and

e R, = {z € RYdist(z,0C) < 2r,} .



cuty,, 2141 / 9 167 d—1PmaxPin;
U 5] <SPt (51 O,
‘ n( ;iLJrl d+1 Sp (s)ds| < d+1 volg—1( )T

2n4—1 2
| NR,).
+ o Pmas vola 1(S )

Proof. Let N; denote the number of edges in the cut originating in point x;. Then
E(cutn,r,) = E(N1) + ... + E(Ny),
and thus, since the sample points are identically distributed,
E(cuty,,,) = nE(Ny).

Conditioning on the position of the sample point z1, we have
E(cuty, ,,) = n/ E(N| X, = 2)p(x)de.
Rd

Setting for r > 0
B(z,r)NCt) ifzeC~
o) = [PBEDINCY) itz e O
w(B(z,r)yNC~) ifxeCt,

we have

E(Nlle = CL') = (n - 1)g(xu’rn)7

cut 1
E( T ) = / x,rn)p(x)de.
) = e [ o@rpte)

For s € S, i.e. on the hyperplane S let ngs be the normal through s (pointing towards
C™*). Then

cuty, ., > 1
E(W> = /S/ mg(sqttns,rn)p(ertns) dt ds.

and thus

We set ) -
ho(s) = —77 / g(s + tng, r)p(s + tns)dt,

n — 00

and define

R, = {z € RY|dist(z,0C) < 2r,}
Z,=C\R,
A, =R\ (Z, UR,).

Then we can decompose the integral into

/ hn(s) ds = / hn(s) ds +/ hn(s) ds +/ hin(s) ds
S SNZ, 5NR., 5nA,



and bound the deviation from the limit for each part separately.

We start with the case s € SNA,. Since dist(s+tns, S) =t we have g(s+tns,ry,) =0
for ¢ ¢ [—2ry,, 2r,]. By definition of A,, p(z) = 0 for x € B(s, 2r,,) and thus especially
p(s + tng) = 0 for t € [—2r,,2r,]. Therefore h(s) = 0 for s € SN A,. Since also
2Mg—1/(d+1) fSﬁ.An p?(s) ds = 0, we have

277d—1 / 2
h,(s) ds — p=(s ds’ =
‘/SnAn =) d+1 Jsna, (=)

Now let s € SNR,, and define

A(t) = vol(B(0,1) N {z = (=M, ..., 2®) 21 > ¢}).
In this case we have
1 o0
hn(s) = 7 / g(s+tng,rn)p(s + tng) dt
n

— 00

1 T
S ’f‘dT/ szmaxA(t/rn)pmax dt
n

—Tn

2 T 2
Pmax " 2pmax77d— 1
= X At/r,) dt = —22%——
Tn /Tn (t/ra) d+1

where we use Lemma 2, a substitution in the integral and finally Lemma 3. Therefore

2141 / 2 / 2P haxld—1 2141 / 2
hyn(s) ds — pe(s)ds < z ds — p“(s)ds
/smzn (s) d+1 Jsar, 5) snr, d+1 d+1 Jsnr, (s)

27761—1/ 2 2

= — p~(s)ds

A+ g, Do TP (s)
214—1 9

< lg—1(SNR,).

< 77 Pmax VOld 1(SNRy)

The other inequality holds trivially.
Finally, let s € S NZ,. By definition B(s,2r,) C C. Let v € R?, |lv|| = 1 and
t € [0,2r]. Applying Taylor’s theorem in one dimension

p(s +tv) = p(s) + Dup(s + Ev)t,
where & € (0,t). Thus for all y € B(s,2r,)

p(y) = p(s)| < 2P



Thus for s € SNZ,,

hn(s) =

IA

1 o0
d+1 / g(s + tnsa Tn)p(s + tns) dt

TTL — 00

1 n

1 / g(s +tng,r)p(s + tng) dt
T _

r [ )+ ) A ) (005) + 2l

— [ (p(8) + 2Dl ) A7) (D(8) + 2plyarn) dlt

1 Tn
)+ D6 + APln) ) / At/r,) dt

2
77 - (p2 (S) + 4p;naxr7l (p(S) + p;‘ﬂaxrn))

2ng—1

T 1 (P°(5) + 4PaxTn (Pmax + Plrax’™))

On the other hand,

hn(3) > 2292 () — 2, )

Therefore

2n4—
/ hn(s) ds — f1d—1
SNz,

and

d+1

d+1

Y

d+1
- 2N4-1, o 4 / Ay 2.2
- d—|— 1 (p (8) - p(s)pmaxrn + (pmax) Tn)
_ 2141 2 Ay /
- d + 1 (p (S) + pmaxrn(pmaxrn —p(S)))
204—1

d+1

Y%

(pQ(s) + 4p§nax7‘ﬂ(pinaxrn - pmax))

d+1

877d—1pmaxp;nax

lg— 7T .
< T4l volg—1(SNZ,)r,

Thus, if r,, is sufficiently small, such that p . .7» < Pmax, we have

’ / hn(s) ds
SNZ,

1677d— 1pmaxp:nax

21a-1 / 2
— s)ds| <
d+1 mnp() = d+1
]-677d71pmaxp;nax

- d+1

voly—1(SNZ,)rn

volg_1(S N C)ry.

8N 11
/ p2 (S)dS < MTH (pmax + p]'maxrn) volg_1 (S n In)
ST, d+1

(12)

2N4— 8n4_1p’
1 / p*(s)ds — / hn(s) ds < Mrn(pmax — Ploaxn) Volg_1(S N Z,)
SNT, SNT,

(13)

(14)

(15)

(16)



Lemma 2 Let S be a hyperplane with normal vector ng and x € R? with dist(z, S) = t.
Set

w(B(z,r)NC*) ifzeC™
g(z,) = ) gwel
w(B(z,r)NC~) ifxelC
and let Pmin < P(Y) < Pmax for all y € B(x,r). Then g(z,7) =0 ift > r, and
s t N t
pminTZA(r) S g(l’,?") S pmaxTzA(r)v

n n

where
At) = vol(B(0,1) N {z = (M, ..., 2®) 21 > ¢}).

Proof. Suppose that z € CT (the other case can be treated analoguously). We use
that by a translation and a rotation of the coordinate system (such that the origin is
at  and —n, is the direction of the first unit vector)

vol(B(z,r,,) N C™) = vol (B(0,r,) N {:I:(l) > t})

and the invariance of the Lebesgue measure with respect to linear transformations. By
scaling we obtain

vol (B(0,r) 1 {z®) > £}) = rd vol (B0, 1) 1 {z® > 1}).

n

Lemma 3 (Integral over cap volume) With
A(t) = vol(B(0,1) N{z = (=M, ..., @) 2™ > ¢})

we have

1
Nd—1

A(t)dt = .
/0 ®) d+1

Proof. We have
1 1 1 1 do1
/ At)dt :/ vol(B(0,1) N {21 > t})dt :/ / e/ =2 drdt
0 0 o Ji
1 pr d—1 1 d-1 [T
= / / Ng—1V1—7r2 ditdr = / Ng—1V1—12 / dtdr
0o Jo 0 0
1 d-1
= [ ng_irvV1i—r2 dr

0



Substituting r = cosf, we have to integrate from 6 = arccos(0) = 7/2 to § =
arccos(1l) = 0, and have dr = —sindf. Thus,

sin

d+1 9] 7\'/2 _ Td—1

1 /2 1
- - d _
/0 A(t)dtfnd_lfo cos 0 sin 0d9fnd_1[d 0 i1l

+1

3 Limit of Ecut,,,

The following lemma is necessary for the proof of both cases, k,/n — « > 0 and
kn/n — 0. The result for the first case is in Proposition 5, the result for the case
kn/n — 0 in Proposition 6.

Lemma 4 (Lower/upper bound on Ecut, x,) Let the general assumptions above
hold. For q € [0, 1] we set

(2, q) = min{r|p(B(z,r)) = q}.
Then for § € (0,1/2),

E(cuty x,) > n(n —1) / p(x)g(x,7(z, (1 — 0)ay)) de — dexp (2 logn — iéan

Rd
17)

)

18)

E(cuty x,) < n(n—1) / p(x)g(z, 7(z, (1 + 6)ay,)) do + dexp (2 logn — 3521%

Rd

)
(
)
(

where oy, =k /(n—1) .

Proof. Let N, (l) be the number of edges originating in point z;. Then, due to the
independent and identical distribution of the sample points,

n

E(cutyr,) = Y BN, ) = nB(N) ).

=1

Let RE» denote the random variable that measures the k,-NN radius and let F Rn de-
note its conditional distribution given that the position of the point is x. Condltlomng



on the position of the point and its k,-NN radius, we obtain
E(cuty , ) = n/ IE(NS,)f | X =2)p(z) dz
Rd v
:n/ p(x)/ E(N) |X =u, Rl =71) dFpe, (r) d
R4 0
=n(n— 1)/ p(:z:)/ g(x,7) dFgr, (r) do
Rd 0 ‘
= [ p@ntn=1) [ gler) APy () s,
Rd 0 ¢

where g(x,r) is defined as above.
Now we treat the inner integral. By the monotonicity in r of g(x,r) and 0 < g(x,r) <1
for all z and r we have

00 7z, (1+38)an)
/ g(w,7) dFpea (r) = / g(x,) dFpea (r)
0 v (@, (1=8)an) :

> (2, 7(, (1 — )an)) Pr (7(, (1 — )an) < RE < 7z, (14 6)an)
> g(z,7(z,(1 = )an)) — Pr(R};" > 7z, (1+0)ay)) — Pr(R];" <7z, (1 = d)ay)),
and
[ 7(x,(1=0)ay) 7(x,(1+0)ay)
| sten apg o= [ otor) Al ) [ ) B

+ /00 g(z, ) dFRg;n (r)

7(x,(1+0)an)
< g(x, 7 (2, (14 8)an)) + Pr(Ry > #(x, (1 + 6)an)) + Pr(Rym < #(z, (1 = §)an)).

We first bound the terms n(n — 1) Pr(R*» > 7(z, (1 + 6)ay,)) and n(n — 1) Pr(R*» <
7(z, (1 — d)ay)). Setting V' ~ Bin(n — 1, (1 — §)a,) we have

n(n — 1) Pr(RE < #(x, (1 = 0)an)) = n(n — 1) Pr(V > k, — 1)
n(n—1) r(V> n_’f _15) (n—l)(l—é)an)
n—lPr(V> ]1“)(:5) —1)(n—1)(1—5)an)
n(n—1)Pr (V> ;); 71)(175)1%)
< n? exp(—i(l—a)kn(m_1)2)
<n2exp(—i(l—5)kn((ikj5—)kln)2)
< exp (210gn 411(((%5)21)



by a Chernoff bound (given that (k—1)/((1—9)k) < 2e, which is the case if 1/(1—0) <
2e). For § < 1/2 as stated above we have

(6kn — 1) 6%k2 — 26k, +1 &2 R 20 1 (19)
1-8k,  (1-0k,  1-8" 1-6 (1-20)k,
> 62k, — 2 (20)

For the other side we have, with U ~ Bin(n — 1, (1 + d)aw,)),

n(n —1)Pr(RE» > #(x, (1 + 0)an)) = n(n — 1) Pr(U < ky,)
kn

(n—1)(149)a,
=nn—-1)Pr(U<(1-(1-

=n(n—1)Pr(U <

(n—=1)(140)ay)

kn
(n—1)(1+0)an

(1) Pr(U < (1= (1= —)(1 4+ 8)kn)

)(n = 1)(1+6)an)

146
1 1
< n?exp(—=(1 1— 2
< ntexpl(—5(1+ k(1 = 1))
2
= exp(2logn — %%kn)

2

< exp(2logn — %kn).

Thus, we have

1 1
n(n —1)Pr(RE < #(z, (1 = 0)a,)) < exp (2 logn — 1621@1 + 5)
1
< _ 1
< 2exp (2logn 1 kn>

where we have used /e < 2, and

2
n(n —1)Pr(RF > #(z, (1 + 6)ay)) < exp(2logn — %k‘n)

Finally,
E(cuty g, ) = / p(z)n(n — 1)/ g(x,r)dF gk, (r) do
R4 0 N

> [ pan(n = 1)o7 (1= o)) = Pr(RE > (e (1+5)a,)
— Pr(RE < #(2,(1 = 0)awy))) dz

> /Rd p(x)(n(n — 1)g(x, 7(z, (1 — d)aw,)) — dexp (2 logn — %6%%)) dz

=n(n—1) /]Rd p(x)g(z, 7(x, (1 — §)ay,) de — 4exp (2 logn — 3521%),



and analoguously for the other inequality. ]

Proposition 5 (Limit of Ecut, k, for k, linear in n) If o, = kp/n — a (n —
00), then

i B cuto,) = [ ge.7(e,0))p(o) do.
n Rd

n—oo

In particular for any sequence 6, — 0 we have

‘E(%) - /]Rd p(x)g(z, 7(x, a))‘ < Opan + |an, —al +4exp (2 logn — %57211%)

Proof. Suppose w.l.o.g. that x € CT, a1,z > 0 with a1 < as. Then

) — w(B(z, 7z, a2)) \ B(z,7(z,01))) N CT)
) — w(B(z, (2, a2)) \ Bz, F(z, a1))

) - M(B('r7 7:(55’ a2)) + M(B(aj, 7:('757 al)))

) — a2+ oy,

where we use that

M(B((E77~'($, a2)) \ B($7F($>a1))) = /‘(B(‘T77~1(m7 a2))) - ,u(B(CC,'F(l‘,Oq))),

since B(z,7(x, 1)) C B(x,7(z,az)) due to ag < as.

Using
(1+6)an <a+dpan + |a, —
and
(1—=¥,)an > a—pan, — |a, — o,
we obtain
9 7, (1= 8.)an)) > g, H(0 — Gt — | — al)
> g(z, 7z, ) —a+ (@ — dpa, — |a, — af)
=g(z,7(x, ) — dpan — oy — af
and

(x, 7+ dpon + oy — )

x
x,7(z,0)) —a+ (a4 dnan + |an — af)
x

10



Thus,

/ p(x)g(z, 7(z, (1 = 6)ay))dz > / p(@)(g(x, 7(2, @) = dpown — o — a)dx
Rd

Rd
_ / p()9(&, 7z, @) )z — 6cn — |atn — 0
]Rd

Analoguously, we can show that
/ p(x)g(z, 7(x, (1 + §)ay,))dr < / p(x)g(x, 7(z, a))dz + dpa, + oy, — af.
Rd Rd
Thus, using the result from Lemma 4 we obtain

‘E( cuty, g,

n(n — 1)) - /Rd p(x)g(mj(x,a))‘ < Onap + |y, —al +4dexp (2 logn — %(San)

O

Proposition 6 (Limit of Ecut, , for k,/n — 0) Let p be bounded from above on

R? and from below away from 0 on C, that is p(z) < Pmax for all x € R and p(z) >

Pmin > 0 for all x € C. Furthermore let p be differentiable in the interior of C' and the

absolute value of the directional derivative bounded by pl ..

Assume further that we can find constants r~, v > 0 such that for allz € C andr < r,
vol(B(z,r) N C) > yvol(B(z,r)). (21)

Let oy, = kp/(n — 1) — 0 and §, — 0 with 6, < 1/2 for alln € N.

Let n > 2 be sufficiently large such that

20,
YPminld

Uy = 2p;nax d |/ 2an .
Pmin YPmin'ld

Ry = {z € RY|dist(x,0C) < 2rmax
T, =C\R,

d

< Ty,

and set

Further define

Then we have for v, < 1/2

1 n 2Ng—1 —1—1/d/ 1—1/d
B {2 cut, ) > (1— v, —25,) 5142 /
nkn k'n cu Jkn - ( V. ) d + 1 77d ST, p (S)

1
~ dexp ((1 +1/d)(logn — log ky) — idikn),

11



and

1 /n C1N2Ma—1 —1-1/d _
E(nk d k—cutnk )§(1—|—64yn+35n—|—72n 1)mnd / /sznp1 1/d(s)

SP%IXM 7d V01d71<s N Rn)
’yl+1/dpmin Na

1
+dexp ((1 +1/d)(logn — log ky) — Z(Sikn)

Proof. According to Lemma 4 we have for an arbitrary sequence §,, with d,, < 1/2 for
allneN

1E(n]1c \/:cutnk z”_l\f/w 2 (1= 6,)an)) da

—4dexp (14 1/d)(logn —logk, _152/% ,
4 n

E(ni \/;cutnkn Sn_l\/i/w 2, (14 6,)an)) de

1
+dexp ((1 +1/d)(logn — log kn) — Zéikn).

and

First we show, for a suitable sequence §,,, an upper bound for the integral

”_1\/>/Rd 2, (1+ 6,)a)) da.

If S denotes the separating hyperplane and for s € S, ngs denotes the normal in 5,
then

e z, (1+ dp)an)) da (22)
:/Snk—l\/;/_ p(s + tng)g(s + tng, 7(s + tng, (1 + 6p)ay)) dt ds  (23)
:/Shn(s)ds, (24)

where we have set

1 o0
5) = nk d/kﬁ/ p(s +tng)g(s +tng, 7(s + tns, (1 + 6p)ay)) di. (25)

We set
o (T+ 5n)an

Tmax 1+6n Qpn) =
(( Jon) Fo—

12



and assume that Fmax((1 + d,)ap) < r.,. Then, for z € C,
14 0n)an 14 0n)an
N<B(x, d <+>>> > i vol (B(x, (Ll mc)
YPmin'ld YPmin’ld

> pminV\’Ol <B (x, d (14_5”)O‘”>
YPmin"d

(14 0n)ay,
YPmin’d
= (1 + 6n)an

= Pmin”Y

and therefore we have 7(z, (1 + 6,) ) < Fmax((1 + dpn)ay,) for all z € C.
Define r®* = Fipax((1 + 6, )ay,) and

R, = {z € RY|dist(z,00) < 2rma}
Z,=C\R,
A, =R\ (Z, UR,).

Then we can decompose the integral into

[3 () ds = [3 () dat /S () ds /S ) s

Let s € SN A,. Then d(s,C) > r* and thus for |t| < r®* we have p(s + tng) = 0.
If |t| > r®* and s+tns ¢ C then p(s+tns) = 0 as well. Otherwise, if s+ tns, € C we
have 7(s + tng, (1 + 0p) ) < 7 but d(s + tns, S) > r** and thus g(s + tns, 7(s +
tns, (1 + 6, )ay)) = 0. Therefore

/ hn(s) ds = 0. (26)
SNA,

Now let s € SNR,. We have for any s € S and t € R

p(s +1tns)g(s + tng, 7(s + tng, (1 + 8)an)) < Pmaxg(s + tns, Fmax ((1 + 6)an)),

13



since either p(s + tngs) = 0 or p(s + tns) < Pmax and the condition on 7 above holds.
Therefore we have (assume 6 < 1)

n—1 +7max (1485 )an)
hon( \/ / DPmaxd (s + t1s, Fmax (1 + 0n) vy )) dt

Tmax ((1+6n)an )

n_1 Hmax (148, )an)
S A / / p?naxndfﬁlax((l + 5n)0[n) dt
7max((1+6 )an)
n—1_[n (14 6p)ay
= -— 72 Tmax
kn ]C pmdxnd YPmin"d ¢ (( )

2 On)Ctn
= (1 + 5n)n pmax af (L4 Oé
’ypmln ’melnnd

2p;,

14+1/d max

(1+0n) ’71+1/dp14-_1/d’l7(11/d
8p?

— 14+1/d _1/d’
fyl+1/dpmin Na

IN

and thus
8p? /
hn, ds < max 14 -
/SQR” (8) S S 71+1/d 1+1/d17;/d SR S ( )
8pmax
- ’yl+1/d 1+1/d_1/d VOld*I(S N Rn) (28)
min d

Finally, we consider the case s € S NZ,, that means B(s,2rp®*) C C. For all y €
B(s, 2r**) we have

P(8) = 2D}axn ™ < p(y) < p(8) + 2P pax ™, (29)

or, written differently,

p;nax max p;’nax max
p(s)(1 —2—="=r) <p(y) <p(s)(1 4+ 2—="=r,"). 30
(3)(1 = 220 < i) < ()1 + 2250 (30)
Setting
/
20,
v, = oPmax of £0n (31)
Pmin YPminTld

under the assumption §,, <1

p(s)(L —vn) < p(y) < p(s)(1 + vn), (32)

and we have for all z € B(s, ri®¥),

1+(5 . 1 (14 0p)a,
< <d d
\/1—|—an < e (Lt dnan) < {34 —50m

14




We denote

= L)L+ 6o
1- Un p(S)T]

By the monotonicity of g, we have

s) = n-1 (’/T/oo p(s+tng)g(s + tng, 7(s + tns, (1 + d,) )
<n—1\/>/ (1 + vp)p(s)g(s + tng, 74 )dt
<=l \f / (14 v)p(s) (74 VLA ) (1 + vy )p(s)dt
- ”k‘n e [ Aty )t

= L R [ Al

n—1 n 214—1 2 2/ \=d+1
P \/;d—kl( T s
)1+1/da1+1/d((1 + 5n) ) 1+1/d

+
n—1 [n 2ng_1 2.2 ( 1
— df =
e (e SR O G e " p(s)n
_ (1+Vn)2 1+1/d ¢f " 2Ma—1 —1-1/d_1- 1/d
= A=zl o) o SR )

And thus

(14 vn)? 1+1 no 2041 —1-1/d _
ho(s)ds < ————0 (1 46,)H1/da 1-1/d(4) ds.
/S ) ds < o S (46 e T ) ds

For v, <1/2 we have

d 1+1/d
(1+v,)° 14w, \ Y 1-1/d 2vn 1-1/d
(1— )74~ \1—u, (Lt o) Ut At vn)™

< (14 4wn) VAL 4 dw) Y = (14 4wy )?
=148y, + 161/% <1+ 16vy,,

and, since §,, < 1 by assumption,
(14 6,) Y4 < (146,)2=1426, +02 <1+ 36,.

Combining these, and

15



for n > 2, we have for v,, <1/2 and 4,, < 1

(1+rv,)? 141/d 4/ T -1
< (14 64, +35,)(1 +2n71)

<1+ 64v, + 36, +2n" ' + 128v,n" ' + 65,0

<1+464v, +36, +2n" ' +64n"t + 60"
=1+ 64v,, + 38, + 72n""

Now we treat the other side, that means the integral

”_1,/ / 2, (1— 8,)an)) dz.
R4
We set
_ n—1 [n [ .
h(s) = d/?/ (5 + ts)g(s + tng, 7(s + tng, (1 — 6,)am)) dt

and can show similarly to above

nk_nlT/Z/de(m)g(xj(x,(l—(5n)ozn)) dxz/sh;(s)ds

With R,,, A,, and Z,, as above we certainly have

/h;(s)dSZ/ h=(s) ds+/ B (s) ds+/ h=(s) ds
S SNZ, SNRn SNA,
2/ h. (s) ds.
SNZ,

(33)

(34)

(35)

Let s € SNZ,, and v, as above. For all y € B(s, 2r®*), under the assumption ¢, < 1,

we have p(y) < (14 v,)p(s) and thus for all z € B(s, ri?®*),

~ 1* an
o, (1= da)an) 2 {1

1 /(1 =0n)ay,
1+ vy p(s)n

Setting

~ d

16



we have by the monotonicity of g,

n—1

(o) =St [ s g+t s+t (1 8,)an)

_1 o
L /kﬁ/ (1= v )p(s)g(s + tns, 7 )dt

2 \/kW / (1= va)p(s)(F-) A(t/7-) (1 = v )p(s)dt

B n}; : ﬁ(l —u )W)t [ At

—Tr—

_ ”]; 1 </Z(1 — )22 () )27 [ Afu)du

0
n—1 n 2M4-1 2 2, \~dil
= al © 1—
P w1 P
n—1,/n 20 2,2 ( 1 )1+1/d 1+1/d((1—5n))1+1/d
= af 22 11—,

(1- Vn)2 1+1 noo2M4-1 —1-1/d_1_
— ") (s H/daf 0 Zd=l 1-1/d( gy
(1+Vn)1+1/d( TL) n—1 d+].77d p (8)

And thus

_ (1 — Vn)Q 1+1/d n 277d_1 *171/d/ 1—1/d
hiy (5) ds > = ——ia (1= 6,) /0 —— 2P ds.
/szn n(s) ds = (1+ yn)l-l-l/d( ) m—ldg1d oz ? (s) ds

We have
1+1/d 1+1/d
(1_Vn)2 _ 1 —vy / (1_ )171/d_ 1— 2vy, / (1_ )171/d
(1 + Vn)1+1/d B “n N 1+ Vp, o
> (1= 2u,) V91— 20,) 7V = (1 — 20,)2
=1—dv, +402 > 1 — 4,

and
(1—6)Ye>(1-6,)2=1-26,+02>1-26,.

Combining the above, we have

(1 —wp)? 1+1 n
— (1 -0, +/dd7>1_4n_25n'
(1+Vn)1+1/d( ) n—17 v

17



Corollary 1 Under the general assumptions above and

kn, — 0, log(n)/k, — 0

1 n 2n4-1 7171/d/ 1-1/d
E( a t, ) /d(g) d
kg \ T ) T g1 M G (5) ds

Proof. Clearly,

/ ptVd(s) ds < / ptVe(s) ds = / ptY4(s) ds.
SNz, snc s
On the other hand,

/plfl/d(s) ds 7/ plfl/d(s) ds :/ plfl/d(s) ds
s SNZ, SN(C\Z,)
< pHdyoly (SN (C\T))

max

for n — oo.

Using these simple observation, the result of Proposition 6 and the sandwich theorem
we show convergence:
Setting 6, = +/log(n)/kn, according to our assumptions d,, — 0 and

_ logn kn
”logn_\/ n logn logn

exp ((1 +1/d)(logn — log k) — iéikn) <exp ((1 +1/d)logn — 1521%)

for n — oo. Thus

< exp (logn<(1 +1/d) - 75210271)) -0

Since S N IC is a set of (d — 1)-dimensional measure 0 by assumption, we have
volg_1(SNR,) — 0. Similarly, volg_1 (SN (C\Z,)) — 0. O

4 Variance term for cut, ; and cut,,,

Proposition 7 (Deviation from mean for scaled cut, i, ) Under our general as-
sumptions, ky/logn — oo and ky/n — 0,

P 1 . [n & 1 /n 5 2e2pl—2/dp2/d
{5 cutn, B {f et )| > €) < 2w (= =)
r(nk Ty (oo T Gk \ Ty SR )| 7€) S EOXP (ra +1)2

where T4 denotes the kissing number in d dimensions (i.e. the number of unit hyper-
spheres in R which can touch a unit hypersphere without any intersections, see [2]).

18



Proof. Let x1,...,x, be points drawn ii.d. from our density p and let z; € R%.

Let cutff)kn denote the cut induced by S in the k,-nearest neighbor graph that is
constructed on the points 1, ..., T;—1, Ti, Tit1,- - -, Ln. Changing the position of one
point x; to T; at most k, + 274k, < 374k, (where 74 is the kissing number in d
dimensions) edges across the cut can change (because the number of outgoing edges
is k,, and the number of incoming edges is bounded by 74k, cf. [2]).
Thus '

| cuty, k, — cutx)kn | < 374kn.

,1 ot . o[ @ | < BTakn [ 37afm
ko \V " ke, Ve ke = Tk, Vs, n kS

Thus by McDiarmid,
1 1 2¢2
Pr( — Ecutnk —E(— & Ecutnk ) >e) < Qexp(f;)
nk, \l k. B nk, \l k, B n(:m d/£)2
n kn
262n172/dk721/d

(374)

Hence,

= 2exp(— )

1—2/dk.721/d

Since k&, /logn — oo we have n — oo for d > 2 and n — oo. O

Corollary 2 (Limit of cut,, x,) Letd > 2. Forn — oo, ky/logn — oo and k,,/n —
0

nky \ Ky, d+1
Proof. Let € > 0 and let

2Ng—1 —1-1/d _
CUtoo 0o 1= ﬁnd / pl 1/d(8).
S

1 20d—1 —1—
d icutn,kn a5, Zd 177d1 1/d/p1_1/d(8)ds.
s

Then

P (‘7 4 L,L - 00,00 ’ > 6)
T culn k cut
le'n kn o ’

1 n 1 n €
=Tk, V& Sk =E G, R i )17 3
1
+ Pr (‘E(n—kn d ]:—n cuty, k., ) — Cltos, 00 ‘ > %)

The second term converges deterministically (as we have seen in Proposition 6), and
for the first term we have

1 n 1 n € ein_Q/dk;i/d
"\, e ke =5k, &y S )1 7 2) S P 3(ra)?

19



Thus, for d > 2 and k,,/logn — oo we have

oo
E Pr(idﬂcu‘c —]E(Ldﬁcut )’>E><oo
e ke Ve ke, V)17 2 ’

which implies almost sure convergence by Borel-Cantelli. (]

Proposition 8 (Deviation from mean of cut, ,,) For every e > 0 there exists a
constant ce > 0 such that

1 1
Pr (’ ——cut,, ,» 7E<7 cuty, r,
n(n —1)rdt! o n(n — 1)rdt! )

> e) < 2exp(—cenrdth)

Proof. For i,5 € {1,...,n}, i # j set

N — 1 if (X, X;) edge in Gy, », and X; and X, on different sides of S,
I 0 otherwise.

Clearly,
n
Cutnyrn = Z Z Ni,j,
i=1 j#i
and thus
1 1 - 1
cuty, ., ,
n(n 1)7"%+1 o n(n—1) ; ; pdt17
Setting
1
U= cut
n(n — 1)rdtt 0
and
1
9ij = WNLJH
we have
1
0<9ij < —7-
Tn
With b = 1/r&*! we have
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and setting

0? =Varg;; = Var(N;;)

2(d+1)

we have by a remark in [1]

Pr(U—EU>e)<exp< Qb[(l—l—b)log(l_,_b)_l})
oo (-1 Y 14 ) -] ).

Since log(1+z) > x/(1+4x) for © > 0 we have (1+z)log(1+1/z) > 1 and furthermore
one can show that this function is decreasing. Thus the expression in the exponent
can be bounded by using an upper bound for 74152,

We have
1
ratto? =gt Var gy = it 5o EICERY Var(Nij)
= F Pr(NZ-j = 1)(1 — PI(NZ'j = 1)) S d+1 Pr(Nij = 1)

Conditioning on the location of point X; to the surface S we have Pr(N;; = 1) = 0 if
d(X;,S) > rp. Otherwise Pr(N;j; = 1) < pmaxr@nq. Therefore

Pr(N;; =1) < pmaxrﬁnd Pr(d(X;,S) < ).

Under our assumptions there exists a constant ¢; (close to the (d-1)-dimensional mea-
sure of SNC) such that Pr(d(X;,S) <r,) < ¢1r,. Thus there exists a constant ca > 0
with

Combining the above, for each € > 0 we can find a constant ¢, such that
Pr(U — EU > €) < exp(—cenrdth).

Finally, we use U —EU < —e & (—U) —E(—U) > € and a similar argument to the one
above in order to show the statement for the absolute deviation from the mean. O

Corollary 3 (Limit of cut, ., ) Let nrd*t! — 0o for n — oo. Then

1 a.s. 2Tldfl / 2
————cut — s)ds.
nZT;iLJrl n,Tn d+ 1 Sp ( )
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Proof. Similar to the proof for the k-NN graph and using that under the condition
nrd*tl — oo we have for every € > 0

o0
Z 2 exp(—cenrét) < oo.

n=1

5 Bounds for the volume vol

Here we derive the limit for the volume. Limits for other quantities used in the
balancing terms, such as the number of points in one side of a cut, can be derived
similarly.

Proposition 9 (Limit of vol,, s, ) Let H C R? be a subset of R? with u(H) > 0.
Then

B volus, (H)) = (D)

and
Pr (‘% voly , (H) — ,u(H)‘ > e) < 2exp ( - %6271).
n

Proof. The expected number of points in H is nu(H), each of them has exactly k
outgoing edges, thus

E(voly k, (H)) = nknu(H).
Changing the position of one point will change the volume by at most k,, thus with

McDiarmid’s inequality

! _ 2
Pr(|mvoln,kn (H)—p(H)| >¢€) < 2exp(fm) = 2exp(—2¢°n).

Proposition 10 (Limit of E(vol, ., )) Let H C R? be a measurable subset of R?
with uw(H) > 0 and let the following assumptions hold:

o pl .. 1s the supremum of the absolute value of the directional derivative (over all
directions) of p, and

e we can find a constant cy > 0 such that for all € sufficiently small,

vol({z € RY| dist(z,0(C N H)) < e} < 2cpevoly_1(d(C N H)).
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; 2d
Then if r, — 0 and nr;* — oo for n — oo

1

B

voly . (H)) —na /

p2(x)dg:‘ < rpNa (pinaerQcapfnaX Vold_l(a(HﬂC))),
H

for n sufficiently large (such that the condition above holds for r,,).

Proof. Let &, . denote the edges of the graph G, ,,,. With

M. — |{($1,1‘]) S gnﬂ"n}l ifx; € H
‘ 0 otherwise,

we have
vol,,, (H)) =My + ...+ M,

and thus, due to the independent identical distribution of the sample point,
E(vol,, ., (H)) = nE(M).

Conditioning on the realization of the random variable X7, that is the position of z1,
we have

E(voly., (H)) = n /R CE(M X, = o)pla) da
—n / (n — V(B rn))ple) de
H

= n/ (n — Du(B(z,r,))p(x) dz
HNC

and thus . )
E(m voln,r, () = = /H B r)p(a) dr.
Set
R, = {o € HNC|dist(z, (H N C)) < rn}
and
Z,=(HNC)\ Rp.
We have
1
. / u(B,r))p() de
Tn JHNC
1 1
= L uBE ) e+ / w(B(z,ra))p(z) de.
Tﬂ Rn Tn In

Let z € Z,,, v € RY, ||v|| = 1 and ¢ > 0 sufficiently small. Applying Taylor’s theorem
in one dimension
p(z +tv) = p(x) + Dup(z + &)t
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where & € (0,t). Thus for all y € B(z,r,)
|p(y) - p($)| < p;naxrn'
Hence, we can approximate the integral

1 1

o [ B ) dr < = [ 0@+ parrinapta) dz

1 2..d 1 / d

= 7,,7(1 I p(l’) TpMd d$+ ﬁ ;. pmaxrnrnndp(x) dx

n

< Na / p(x)? Az + 4Pl / p(z) dz
T,

n

<" / p(x)? dz + Napluaxrn-

n

Similarly we can show the lower bound, and thus

. / (B, (@) de — s /

— p(x) dw’ < NaPmaxn-
n In

Now we turn to the border strip R,,. We have

: /R B pte) de = / P*(x) da

rd
Tn Rn

1
< - pmaxnd{r;iy,p(x) dz — nd/ p2(.’ﬂ) dx
Tn Rn n

= 1a / PmaxP(2) dz — 14 / p*(x) dz = na / (Pmax — p(@))p(z) dz

n n n

S 77dpmax‘/ p(l’) dz
R

n

On the other hand, clearly

Nd /R p*(z) do — é/RnM(B(wﬁn))p(x) dz gnd/R P(z) do

n

§ ndpmax/ p(iﬂ) dx.
R

n

Thus,

= /R (B )p(e) de = s /

d
n Rn

P(e) d| < 741 vOL(R,)

< 2¢9Map> ax VOla_1(O(H N C))ry
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Clearly,

since both terms are 0. O

Proposition 11 (Deviation from mean of vol, , ) For every ¢ > 0 there exists a
constant c. > 0 such that

1 1

d
Pr (‘W volp,r, _E(W VOln,rn)‘ > 6) < 2exp(—cenr?)

Proof. For i,j € {1,...,n}, i # j set

1 if (X;,X;) edge in Gy, and X; € H |
N;; = )
0 otherwise.

Clearly,
VOln,rn = Z Z Ni,ja
i=1 j#i
and thus
1 1 = 1
ln T Nl
n(n —1)rd VOinra n(n —1) ;; rd= "7
Setting
1
U= J -
n(n —1)rd VOin,ra
and
1
9ij = ENM’
we have
1
0 S 9ij > a
With b = 1/re we have
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and setting

1
@ Va.r(Ni )

o? = Var g;; =

we have by a remark in [1]

Pr(U—EUze)Sexp(—%[(l—i—i)log(l—l—i;)—1})
d_2

m“de r,o €
:exp<_ 21 g (14 ) 1] )

Since log(1+x) > z/(1+4x) for x > 0 we have (14 x)log(1+1/z) > 1 and furthermore
one can show that this function is decreasing. Thus the expression in the exponent
can be bounded by using an upper bound for r%s2.

We have

1

d 2 _ d d

rh,o° =1y, Varg;; = T Var(N;;)
n

= rid Pr(N;; =1)(1 — Pr(N;; = 1)) < — Pr(N;; = 1).

Conditioning on the location of point X; we have Pr(N;; = 1) =0 if X; ¢ H. Other-
wise Pr(N;j = 1) < pmaxr@nq. Therefore
Pr(Nij = 1) < pmax”ina Pr(X; € H) = paxrenap(H).
Combining the above, for each € > 0 we can find a constant ¢, such that
Pr(U —BU > €) < exp(—ccnrd).

Finally, we use U —EU < —e < (—U) —E(—U) > € and a similar argument to the one
above in order to show the statement for the absolute deviation from the mean. O

Corollary 4 (Limit of vol, ,, ) Let nrd — oo for n — co. Then

1

20.d
nery,

voly, r,, 23 77d/ pZ(x) dz.
H

Proof. Similar to the proof for the k-NN graph and using that under the condition

4 o0 we have for every ¢ > 0

nr,

o0
Z 2 exp(—cenrd) < oo.
n=1
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